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1  | INTRODUC TION

Migration is an essential part of many animal life cycles (Dingle, 2015). 
For animals that swim and fly, migration often involves not only long-
distance navigation and ecological interactions with conspecifics 

and predators, but also complex interactions with the physical 
environment in the form of air and water currents (Dingle,  2015; 
Flack et  al.,  2018; Smith,  2012). The way migratory animals inter-
act with abiotic currents can determine the energetic cost of mi-
gration (Pennycuick, 2008) and even whether migration is feasible 
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Abstract
1.	 Understanding how migratory animals interact with dynamic physical environ-

ments remains a major challenge in migration biology. Interactions between 
migrants and wind and water currents are often poorly resolved in migration 
models due to both the lack of high-resolution environmental data, and a lack of 
understanding of how migrants respond to fine-scale structure in the physical 
environment.

2.	 Here we develop a generalizable, data-driven methodology to study the migra-
tion of animals through complex physical environments. Our approach combines 
validated computational fluid dynamic (CFD) modelling with animal tracking data 
to decompose migratory movements into two components, namely movement 
caused by physical forcing and movement due to active locomotion. We then use 
a flexible recurrent neural network model to relate local environmental conditions 
to locomotion behaviour of the migrating animal, allowing us to predict a migrant's 
force production, velocity and trajectory over time.

3.	 We apply this framework to a large dataset containing measured trajectories of 
migrating Chinook salmon through a section of river in California's Sacramento-
San Joaquin Delta. We show that the model is capable of describing fish migratory 
movements as a function of local flow variables, and that it is possible to accu-
rately forecast migratory movements on which the model was not trained.

4.	 After validating our model, we show how our framework can be used to under-
stand how migrants respond to local-flow conditions, how migratory behaviour 
changes as overall conditions in the system change and how the energetic cost of 
migratory movements depends on environmental conditions in space and time. 
Our framework is flexible and can readily be applied to other species and systems.
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at all (Alexander, 1998; Pennycuick, 2003). Because climate change 
and anthropogenic habitat alteration are modifying air and water 
currents at both small and large scales (Boning et al., 2008; Kling & 
Ackerly, 2020; Silva et al., 2018), management plans must increas-
ingly consider how human activities influence the physical environ-
ment through which migrants travel (Thorstad et al., 2008). There is 
a growing recognition that managing migratory species must involve 
managing landscapes to facilitate successful migration (De Lucas 
et al., 2004; Silva et al., 2018). However, to make informed decisions 
about how changes to the environment will alter the ability of an-
imals to migrate, we need a deeper understanding of how air and 
water currents influence migratory physiology and also migratory 
behaviour.

In the past, efforts to understand how migrants interact with 
abiotic forcing have tended to take a migration physiology perspec-
tive, where the emphasis has been on combining biomechanical 
models with physiological data to understand the cost of migration 
in flows (e.g. Martin et al., 2015). For example, classic work on an-
imal migration considered the energetic costs of large-scale mean 
wind or water currents on the cost of a migratory journey and 
on the fuel loads required at stopovers, as well as the ranges mi-
grants could achieve under favourable and unfavourable currents 
(Pennycuick, 2003, 2008). More recently, several studies have ana-
lysed physical data or models of wind or hydrodynamics in the con-
text of animal migration (Arenas et al., 2015; Gao et al., 2015; North 
et al., 2008; Reddy et al., 2016; Weber et al., 2006). Nevertheless, 
a major outstanding challenge in migration biology is understanding 
how migrant behaviour and physical forcing by wind and water cur-
rents interact to determine how migrants move across a landscape, 
and the costs they incur when doing so.

One of the limitations of many animal tracking datasets is that 
only the positions and movements (e.g. via animal-borne acceler-
ometers) of the animal are recorded, and details of the physical en-
vironment through which the animal moves are unknown. Because 
of this, movements must often be studied and interpreted without 
knowledge of the physical forces and sensory cues that influenced 
the observed motion of the animal. This severely limits the types 
of questions about migration behaviour that can be answered with 
movement data. While modern animal-borne sensors can aid in this 
problem (Hughey et  al.,  2018), at present, such sensors are often 
expensive and too heavy to be carried by small animals. Moreover, 
animal-borne sensors have the added limitation that they record 
conditions only in the vicinity of the sensor, leaving the range of 
conditions available to the animal elsewhere in the environment 
unknown.

Here, we present an alternative approach to the problem of 
inferring the physical variables an animal experiences as it moves. 
This approach combines animal tracking data with high-resolution 
physical models of the region through which the tracked animal 
moves. The essential data requirements are (a) animal tracking data 
describing the physical position of an animal or animals over time, 
(b) measurements of the structure of the physical environment (e.g. 
river bathymetry, local landscape topography) and (c) a collection 

of sample measurements of the physical variables one wishes to 
model (e.g. local water or wind velocity), preferably collected from 
the study region over the same range of conditions as those expe-
rienced by tracked animals. The latter two data sources are used to 
build a dynamic model of the physical environment that can then 
be used to infer the physical forces a tracked animal experienced at 
each location in the tracking dataset. The end result of fusing animal 
tracking data with the physical model is a dataset containing posi-
tions, velocities and accelerations of each tracked animal (inferred 
from the tracking data), as well as estimates of the physical forces 
experienced by the animal at each point in time. Such data can then 
be used to infer how physical forces influence movement behaviour, 
and to address a suite of questions related to the energetic output 
required to produce observed movements.

In what follows, we illustrate how to fuse animal tracking 
data and physical variables using, as an example, migratory ju-
venile Chinook salmon migrating through a section of river in the 
Sacramento-San Joaquin Delta in California. Tracking data consist 
of high spatial and temporal resolution tracks from salmon as they 
move through a key segment of the migration route. To model the 
flow environment these animals experience, we combine river ba-
thymetry data with flow measurements taken in several places 
throughout the study region to develop a computational fluid dy-
namics (CFD) model of water flow through the entire study domain. 
We use the CFD model to estimate the dynamic fluid environment 
experienced by each individual along its migratory trajectory. We 
show how this dataset can then be used to estimate the force ex-
erted on the animal by moving water as well as the force produced 
by the animal through locomotion. Finally, to explore how cues from 
the physical environment—in this case the flow cues experienced by 
fish—influence active swimming behaviour, we develop a recurrent 
neural network model to predict active locomotion as a function of 
flow cues, and to forecast fish movement trajectories over the near 
term. Taken together, the elements of our methodology allow one to 
explore a broad suite of questions about how migrants interact with 
environmental flows that have been challenging to address in past 
studies of animal migration. We illustrate several applications of our 
approach by applying it to questions about navigation behaviour and 
migratory energetics over a wide dynamic range of flow conditions.

2  | MATERIAL S AND METHODS

The methodology we use to integrate tracking data with estimates 
of the flows animals experience is illustrated in Figure 1. In addition 
to estimating physical variables at each point in time, the framework 
includes a step to predict movement behaviour of animals as a func-
tion of these physical variables (Figure 1e,f) to determine the extent 
to which physical variables affect movement decisions. The data 
inputs to the modelling framework are animal trajectories and the 
bathymetry and hydrodynamic data needed to build the CFD model 
(Figure  1a,b). The hydrodynamic data consist of two-dimensional 
(along-stream and lateral) near-surface river water velocity 
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F I G U R E  1   Modelling framework. (a) 
Physical features of the environment 
and inflow data are collected along 
with (b) migrant movement trajectories. 
(c) Physical data are used to build 
computational fluid dynamic (CFD) 
modelling of water flow. (d) CFD 
predictions are combined with observed 
fish movements used to decompose 
motion into drag-induced forcing by 
the flow and active locomotion. (e) 
The Long Short-Term Memory Neural 
Network (LSTM-NN) model is developed 
to forecast locomotion. (f) Locomotion 
predictions and flow are combined to 
forecast movement trajectories and 
predictions are compared to out-of-
sample data
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measurements collected with four acoustic Doppler current profilers 
(ADCPs; see Section 2.1 below), and river bathymetry obtained from 
the 2010 California Department of Water Resources and the US 
Geological Survey's 2-m-resolution multibeam sonar survey (Wang 
et al., 2018). Fish trajectories consisted of two-dimensional (along-
stream and lateral) tracks obtained from the California Department 
of Water Resources (see Section 2.1 below).

We use the hydrodynamic data as inputs to simulate the flow 
field in the section of river system with submeter spatial resolution 
and 1-s temporal resolution using an unsteady Reynolds-averaged 
Navier–Stokes (URANS) CFD model (Figure 1a–c). We use the fish 
trajectories to first quantify the kinematics of motion (i.e. the veloc-
ities and accelerations of the fish) and, subsequently, the hydrody-
namic information to quantify the dynamics of motion, that is, the 
drag forces experienced by the fish and the locomotion forces ex-
erted by the fish (Figure 1d). We then model the locomotion force 
of each individual using the information from the fish trajectories 
and local hydrodynamic forces by training the neural network model 
describing fish locomotion behaviour. Subsequently, we employ the 
trained neural network for multivariate time-series prediction of lo-
comotion forces as a function of the time series of hydrodynamic 
forces and behavioural responses (Figure 1e). After producing pre-
dictions of locomotory behaviour, we used the drag force and the 
locomotion force predicted by the neural network to predict each 
individual fish's trajectory (Figure 1f).

2.1 | Field data

Flow and animal tracking data were provided by the California 
Department of Water Resources. These data were collected through 
a large collaborative study of a segment of the San Joaquin River 
within an agricultural and urban watershed in the California Central 
Valley (study details provided in McQuirk et al., 2015). The spatial 
locations of fish implanted with acoustic transmitters were inferred 
using tag detections by a hydrophone array extending over roughly 
1  km of the San Joaquin River at the junction with Old River—a 
tributary—and immediately downstream of the southernmost extent 
of the Sacramento-San Joaquin Delta. The Delta is an inverted al-
luvial fan estuary formed at the confluence of the Sacramento River 
from the North and the San Joaquin River from the South, as well as 
numerous tributaries. This watershed is used by several species of 
salmonids of high conservation concern. Subpopulations of Chinook 
salmon Oncorhynchus tshawytscha and steelhead Oncorhynchus 
mykiss traverse portions of the San Joaquin River and the Delta dur-
ing their juvenile migration to the Pacific Ocean (Williams,  2006), 
where they mature before returning as adults (see Sridharan 
et al., 2006 for a detailed description of the hydrometeorology and 
hydrodynamics in the Delta).

Our study domain includes distinct regions as shown in Figure 1a: 
(a) a 500 m long reasonably straight prismatic section of the main-
stem San Joaquin River about 150 m downstream of a meandering 
section where the flow is southeast to northwest; (b) a junction at 

the northwestern region of the straight section where the Old River 
bifurcates to the west; and (c) a sharp 90° bend eastward in the 
mainstem San Joaquin River. During the period when the study was 
conducted, the bifurcation into Old River was blocked by a tempo-
rary earthen barrier (white box in Figure 1a). The eastward bend at 
the northern end of the domain is characterized by an approximately 
10-m deep scour hole along the north bank where the flow sepa-
rates and strongly recirculates before rejoining the freestream along 
the San Joaquin River (see Appendix D for the bathymetry of study 
domain).

Two-dimensional near-surface velocity fields were acquired by 
AECOM Technical Services between 23 April and 30 May 2012 
using moored RDI Channel Master side-looking broadband ADCPs 
operating at 600 kHz. Each cross-section was comprised of 2-m bins, 
over which point velocity measurements were averaged over several 
minutes. A 5-m-resolution flow field was reconstructed at 15-min 
intervals throughout the study domain by first numerically com-
puting the streamlines from the southermost ADCP cross-section 
and performing an inverse distance weighting interpolation using 
the velocity vectors obtained from the instrumented cross-sections 
(Stumpner, 2013a, 2013b). Fish trajectories were obtained from 424 
Fall-run Chinook salmon implanted with injectable HTI hydroacous-
tic tags (M800 and 795Lm models) which were detected at 13 HTI 
hydroacoustic detectors (model 590) deployed in a two-dimensional 
array throughout the system. By co-locating fish position using a 
minimum of four detectors, fish positions were typically estimated 
at a precision of within 1 m every 2 s (McQuirk et al., 2015). In the 
present study, we used 184 of these tracks that were sufficiently 
long to be included in the neural network analysis. We applied our 
own post-processing pipeline to raw tag detections. This consisted 
of breaking tracks from each fish into subsegments if subsequent lo-
cations were separated by more than 30 s in time. Within each sub-
segment, we smoothed tracks using a third-order Savitzky–Golay 
filter with filter length of 22 s. Positions were also interpolated to a 
regular time interval of 2 s between subsequent locations.

2.2 | Fish behaviour

2.2.1 | Movement kinematics

The first step in our workflow is describing the kinematics of fish 
movement. The accuracy of position data in the depth dimension 
was poor, likely due to constraints on the positioning of hydrophones 
determined by the relatively shallow average depth of the study re-
gion (McQuirk et al.,  2015). As a result, we were unable to study 
the movements of fish in the depth dimension, and we retained only 
the horizontal coordinates of the position of each fish. Accordingly, 
tracks are represented as two-dimensional trajectories through the 
river section, and we consider only horizontal components of the 
fish kinematics and dynamics. Henceforth, we assign the east–west 
direction as the x-dimension and the north–south direction as the 
y-dimension. To keep track of the relative motion of fish and flowing 
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water, we define two reference frames, namely an inertial frame 
(x, y) fixed at a point on the river bank and a relative frame (x′, y′) 
moving along the fish trajectory with water velocity vw (Figure 1d). 
Given these reference frames, the position of a fish can be defined 
as follows:

Here rg is the fish position with respect to the inertial frame (x, y), rr is 
the fish position with respect to the relative frame (x′, y′) and rw is the 
position of the relative frame with respect to the inertial frame. By re-
cursively differentiating Equation 1 with respect to time we obtain the 
velocity vg and acceleration ag of each fish as follows:

vg and ag are the velocity (or overground velocity) and acceleration of 
fish with respect to the inertial frame; vr and ar are the relative ve-
locity and acceleration of fish with respect to the relative frame; and 
vw and aw are the velocity and acceleration of the relative frame with 
respect to the inertial frame. The latter quantities can also be inter-
preted as velocity and acceleration of a water parcel along the fish's 
trajectory. Equations 2 and 3 are useful to decompose the fish motion 
(see Section 2.2.2 below).

2.2.2 | Movement dynamics

Once the kinematics are defined, we subsequently apply the mo-
mentum equation (i.e. Newton's second law of motion) to each fish 
to quantify its movement dynamics. In the horizontal plane, we iden-
tify two forces for each fish, namely locomotion force FL and drag 
force FD (Figure 1d). We assumed that vertical forces such as gravita-
tional force and buoyancy balance each other resulting in null verti-
cal acceleration. Defining the mass of fish as mfish, the fish dynamics 
can be summarized as

The drag force acts opposite to the relative motion of the fish 
moving with respect to the surrounding flow and it can be defined 
(Hoerner, 1965) as

where �w is the water density, Af is the wetted area of fish and Cd is 
the drag coefficient, see Appendix A for how we calculate Cd and Af

. The term vg − vw is the fish relative velocity vr with respect to the 
relative frame (see Equation 2). The locomotion force can then be 
calculated by inverting the momentum equation (see Equation 4). For 
this approach to be useful for understanding how instantaneous fish 

behaviours contribute to their overall migration trajectories, we need 
information on the drag force at a spatial and temporal resolution com-
mensurate with the tracking data. While mfish can be obtained from 
the metadata associated with the tracking experiments and ag can be 
directly obtained from the tracking data, FD cannot be calculated at the 
desired resolution from the 15-min 5-m-resolution interpolated ADCP 
vw fields. We therefore developed the CFD model of the river system 
to estimate vw, and used this estimate to infer FD and compute FL. The 
details of the CFD modelling are described in the following sections.

The tracking data consist of 184 fish tracks for a total of 129,830 
location points with a standardized temporal resolution of 2 s. We 
show several example tracks in Figure 1b. Given the fish position xg(tn) 
from each track, the fish velocity with respect to the inertial frame (see 
Section  2.2.1) is vg(tn) ≈ (xg(tn+1) − xg(tn))∕Δt, where tn = [2, 4, 6,…] 
and Δt = 2s. The fish velocity with respect to the relative frame is 
obtained by reversing Equation 2 such that vr(tn) = vg(tn) − vw(tn).  
vw(tn) is computed from the CFD results for each fish track (see 
Section 2.3). Consequently ar(tn) ≈ (vr(tn) − vr(tn−1))∕Δt. With the ki-
nematics defined thus, it is now possible to calculate the locomotion 
force for each fish by combining Equations 4 and 5 such that

It is important to notice that FL(tn) is a function of vg(tn) and vw(tn) as 
shown in Equation 6.

2.3 | Hydrodynamic variables

The next step in our workflow is to compute the drag force FD on 
the fish. Since FD is a function of vw (see Equation 5), we simulated 
the flow dynamics of the river using a three-dimensional CFD model 
based on URANS equations. The river flow is considered incom-
pressible and isothermal with the deflection of the water surface 
being represented by a two-phase water-air volume of fluid (VOF) 
model. We used the openFOAM solver interFoam (Deshpande 
et al., 2012) to develop this model. Although the tracking data we 
used are two-dimensional, we constructed a three-dimensional CFD 
model to realistically represent the statistics of the turbulence and 
the flow dynamics at the scour hole and in regions near the channel 
banks. We assumed tracks were located within the uppermost cell 
of the CFD volume corresponding to approximately 0.3 m below the 
water surface.

2.3.1 | Solver and model parameters

The interFoam solver in openFoam implements the continuity and 
momentum equations for isothermal and incompressible flows along 
with an additional equation tracking the fraction of air within each 
parcel of water. The URANS models require turbulence closure 
equations in order to be a well-posed PDE system (Menter, 1994). 
We used the k − � equations to represent the statistics of the 

(1)rg = rr + rw.

(2)vg = vr + vw,

(3)ag = ar + aw,

(4)mfishag = FL + FD.

(5)FD = −
1

2
�wAfCd | |vg − vw | | (vg − vw),

(6)FL(tn) =
1

2
�wAfCd | |vr(tn) | |vr(tn) + mfishag(tn) = f(vg(tn), vw(tn)).
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unresolved turbulence. The boundary conditions for the veloc-
ity and the water elevation are based on field measurements (see 
Section 2.1). The empirical flow velocity time series is available at 
the inlet section for the 3-month period from March to May with 
a time resolution of 15 min supersampled linearly at 2-s intervals.

2.3.2 | Modelling active locomotion: A neural 
network approach

The final step in our workflow (Figure  1e,f) is to develop a model 
describing how fish locomotion depends on features of the environ-
ment, including the hydrodynamic forces the animal experiences 
as it moves through the water. The details of sensory integration, 
processing and decision-making during navigation are poorly un-
derstood for most migratory species, including migratory fishes. To 
avoid making ad hoc assumptions that might arbitrarily restrict the 
form of the relationship between physical variables and movement 
behaviour, we modelled the effects of flow on movement behaviour 
using a flexible approach for time-series prediction, the Long Short-
Term Memory Neural Network (LSTM-NN).

We selected the LSTM-NN as a reasonable model of movement 
behaviour for the following two reasons: first, in the past, LSTMs 
have been used successfully to model movements of vehicles and 
pedestrians (e.g.; Altché & De La Fortelle, 2017; Xue et al., 2018). 
Second, there is detailed documentation in the literature (Kang & 
Choi, 2005) on how LSTMs are implemented in TensorFlow (Abadi 
et al., 2015). This existing software implementation makes LSTMs a 
convenient modelling tool for describing the relationship between 
physical variables and migrant behaviour when no a priori model ex-
ists. Details of the underlying structure of the LSTM and how it maps 
inputs to outputs are given in the Appendix D. In the Discussion, we 
further elaborate on the pros and cons of LSTM and the situations 
in which it is likely to provide a good model of navigation behaviour.

In the current application, we use the LSTM to predict the loco-
motory force produced by migrating fish at each time step. We take, 
as input to the network, the overground velocity of fish, vg, and the 
water velocity, vw, because FL = f(vg, vw) as shown in Equation 6. This 
assumes the fish could measure overground velocity, which could be 
accomplished, for example, through visual means, by estimating the 
optic flow of visual features on the benthos (e.g. the river bed itself, 
submerged debris or aquatic vegetation). In the past, environmental 
variables such as water acceleration, hydrostatic pressure (Goodwin 
et al., 2014), turbulent structures (Lacey et al., 2012), turbulent ki-
netic energy intensity (Gao et al., 2015) and circulation around the 
fish (Oteiza et al., 2017) have been used to explain fish movement 
behaviours. We decided to use the water velocity experienced by the 
fish because the river system under consideration is characterized by 
a relatively low turbulent kinetic energy content, and because other 
mechanisms of behavioural response to variables such as the local 
shear or circulation are not understood in complex environmental 
flows. Moreover, exploratory analyses including other variables in 
LSTM-NN training did not indicate improved performance.

The resulting trained LSTM-NN is a function that relates the over-
ground velocity and water velocity experienced by a migrating fish at 
some time tn−1 to the locomotion force produced by that fish at time tn: 

where tn is the discrete time step with n = [0, 1, . . . ,N − 1,N]. We note 
that the use of vg in this formulation allows us to explicitly model the 
locomotion of the fish as a function of its memory of its response to the 
local environment, as well as its current sensory experience. Details of 
LSTM-NN structure and how inputs map to predictions are given in 
Appendix C.

2.4 | LSTM-NN fitting, predictions and out-of-
sample testing

We used the LSTM-NN module available in TensorFlow (Abadi 
et al., 2015) for predicting FL. The training dataset consisted of the 
time series of overground velocities of fish and water velocities along 
the fish tracks. Furthermore, we used the time series related to the 
observed components of the locomotion force FLx (tn) and FLy (tn) com-
puted with the field data, see Equation 6, as reference output for the 
LSTM-NN training. We optimized the LSTM-NN settings to minimize 
the average error of ΔFLx and ΔFLy, where Δ is the difference between 
the predicted and actual value. We tested a number of LSTMs-NNs 
with an increasing number of cells and used the k-nearest neighbour 
method (Arya et al., 1998) to select the architecture with the opti-
mal number of cells (see Appendix C). We found an LSTM-NN with 
112 cells to be the optimal configuration, because it produced ΔFLx 
and ΔFLy with minimal average error. After the end of the cascade of 
LSTM-NN cells, we included a dense layer of two rectified linear acti-
vation functions, ReLU, to output the model results (Abadiet al., 2015). 
The length of the training dataset was 60% of the original dataset 
subdivided in 72 batches; the total length of the dataset consists of 
129,830 data points. We trained the LSTM over 30 epochs.

2.5 | Forecasting fish movements

Once the LSTM-NN model of FL(tn) is fitted to training data, it can 
be used to predict migrant trajectories by applying the forward Euler 
method to Equation 4 as follows:

Hence, considering Equations 2 and 5

(7)FL(tn) = LSTM(vg(tn−1), vw(tn−1)),

(8)mfish

vg(tn) − vg(tn−1)

Δt
≈ mfishag(tn) = FL(tn) + FD(tn),

(9)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

FL(tn)=LSTM(vg(tn−1), vw(tn−1))

vg(tn)=vg(tn−1)+ (FL(tn)+FD(tn))
Δt

mfish

xg(tn)=xg(tn−1)+vg(tn)Δt

.
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The initial conditions vg(t0), vw(t0) and xg(t0) are determined from the 
corresponding field data. This scheme can be used both to predict fish 
velocities and trajectories in-sample, and to predict entirely new tra-
jectories, given the appropriate input data.

3  | RESULTS

3.1 | CFD results

We used the CFD model of the study domain to compute flows over 
the duration that fish were present. In Figure 2a, we show a snapshot 
of the water velocity field in the horizontal section near the water 
surface (where the fish trajectories are assumed to be contained). The 
contour colours represent the water velocity magnitude, while the 
vectors represent the direction of local flow. The southeast region 
close to the inlet is characterized by a flow that tends to be uniform. 
In contrast, the northwest region close to the barrier shows a large 
area of flow recirculation; two counter-rotating vortexes appear 
along the barrier (Figure 2b). A vortex rotating in the anticlockwise 
direction on the northern bank is visible in Figure 2c. The formation 
of this vortex is due to the sharp bend of the river course and associ-
ated scour hole, causing the flow to recirculate along the north bank.

We validated the CFD model by comparing the velocity profiles 
from the numerical simulation against the velocity profiles from the 

field measurement; we show in Figure  2d,e that the CFD results 
(lines) are in good agreement with the ADCP measurements from 
two cross-sections which include a typical variation of ±5.8  cm/s 
within each velocity bin (dots; McQuirk et al., 2015).

3.2 | Fish migration behaviour and LSTM model 
predictions

The tracking data provided are an extensive collection of fish ve-
locity and trajectory estimates from across the study domain. By 
applying the velocity decomposition introduced above to the fish 
trajectory data and CFD-generated flow velocity predictions, we 
were able to estimate the distinct contributions of water flow and 
migrant locomotion to the observed overground velocity of each 
migrating animal. In Figure 3b, we show the probability density func-
tion (pdfs) of the magnitudes of the fish overground velocity, | |vg | |, 
and the fish relative velocity | |vr | | (i.e. the animal's velocity relative 
the the moving water), as well as the magnitude of water velocity at 
observed fish locations | |vw | |. Note that the overall magnitude of 
relative velocity of the fish—the component of velocity due to active 
locomotion—often exceeds the magnitude of water velocity, indicat-
ing that fish regularly swim at speeds that are higher than the speeds 
of the flows in which they are swimming. This can be seen more di-
rectly in the distribution of the ratio of relative velocity magnitude 

F I G U R E  2   (a) Snapshots of the velocity field magnitude at one point in time. The colour bar indicates flow magnitude in units of m/s. 
Lines through the domain show cross-sections used for model validation. Red line: Section 1 (shown in panel e). Green line: Section 2 (shown 
in panel d). (b) Zoomed in view of the western bank showing regions of weak recirculation flow. (c) Zoomed in view of the northern bank 
showing a vortex. (d) Comparison between CFD flow predictions (line) and water velocity magnitude measured by ADCP (blue dots and error 
bars) in Section 2. Profiles averaged over 30 min. (e) Comparison between CFD predictions and data

(a)

(b) (c)

(d)

(e)
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to the overground velocity magnitude, Figure 3a. The right tail of this 
distribution shows cases where fish are swimming at speeds that far 
exceed the speed of local water movement.

Employing Equation 6, velocity estimates can be used to estimate 
the locomotory force produced by each fish to achieve its observed 
motion. The LSTM-NN model of locomotion accurately predicted 
this locomotory force in the 51,932 data points (40% of the original 
dataset) that were held out during training (Figure 3c). Typical errors 
for direction are within 20% of observed values, and magnitude es-
timates are typically accurate to well within 10% of observed values 
(Figure 3c). Our results indicate that our model of fish swimming be-
haviour is able to predict this behaviour for times and locations on 
which the model was not trained (i.e. on the out-of-sample data).

Given a prediction for the locomotory force, the equation system 
in Equation 9 can be used to predict a fish's trajectory, xg(tn), in addi-
tion to the locomotion forces, accelerations and velocities.

We show the distributions of error in predicting position pre-
diction measured in body length for several time ahead predictions, 
for example, from 2 s up to 30 s (predictions shown are for 51,932 
data points held out-of-sample during training) in Figure 4a; while 
the tail of the error distribution includes significantly larger errors as 
the prediction horizon increases, the mode of the error distribution 
only grows by roughly one body length when moving from a predic-
tion horizon of 2 s to a horizon of 30 s. Red and blue distributions 
in Figure 4a show 2 s-ahead and 6 s-ahead predictions, illustrating 
that increasing the forecast horizon from 2 to 6  s does not result 
in a dramatic decrease in the quality of predictions. Nevertheless, 
the discrepancies between the observed and predicted trajectories 
do continue to grow as the prediction horizon is increased as one 
would expect. In Figure 4b, we show the dependence of the mean 
and standard deviation of the error in predicting position on the 
forecast horizon. Up to forecast horizons of 30 s, the mean predic-
tion error remains below four fish body lengths. It is worth noting 
that the mean and standard deviation of prediction error represent 
a small fraction of the typical travel distance during any given fore-
cast horizon. For example, in 30 s the average travel distance is 91.1 
body lengths while the mean error is about 3.5 body lengths (green 

scale in Figure 4b). In Figure 4c, we show a sequence of predictions 
along the length of a long trajectory. In Figure 4c, the blue line is the 
actual trajectory of a tagged fish while the red dots are the 2 s-ahead 
predictions; this fish trajectory consists of 455 points corresponding 
to 906 s of the fish's trajectory through our study region. We zoom 
into two parts of the trajectory which are structurally different from 
each other, namely a relatively straight section in Figure 4d and a 
sharply curving section in Figure 4e. In these plots, the black dots 
are initial locations to initialize the model in Equation 9. In both sec-
tions of the track, there is a close alignment between the observed 
and predicted trajectory points. In Figure 4f–g, we show the same 
sections of the track for 6 s-ahead predictions (three time steps 
ahead); while the accuracy tends to decrease as the prediction hori-
zon increases, errors remain reasonably bounded, even in the highly 
curved region of the trajectory.

By combining the CFD model to predict flow and the LSTM-NN to 
predict fish locomotion in response to flows, one can explore a wide 
range of questions about how flow and locomotory behaviour of ani-
mals interact under different conditions. For example, by exploiting the 
first two equations in Equation 9, it is possible to estimate the move-
ments of fish across the entire flow domain for different environmental 
conditions of interest. In Figure 5a, we show snapshots of the water 
velocity vector field in the river system during the period of lowest and 
highest outgoing flows respectively. In Figure 5b, we show the ‘relative 
swimming velocity’, Rfw, defined as the ratio of the magnitudes of rela-
tive velocity of fish and the water velocity, for the same flow conditions 
shown in Figure 5a. Two key patterns are immediately evident. First, 
the relative swimming velocities of the fish regularly exceed water ve-
locity throughout much of the domain. This predicted spatial pattern is 
consistent with the empirical observation shown in Figure 3a,b that the 
observed relative swimming velocities regularly exceed water veloc-
ity. Moreover, this demonstrates the degree to which fish movements 
appear to be driven by active swimming behaviour rather than simple 
passive forcing by the flows. The second pattern evident in Figure 5b is 
that there is a strong spatial heterogeneity in the ratio of fish to water 
velocities, and these spatial patterns change as the overall flow transi-
tions from weak to strong. For example, during low flows, the relative 

F I G U R E  3   Empirical velocity data 
and LSTM-NN prediction performance. 
(a) Probability density function (PDF) of 
the ratio of the magnitudes of the fish 
relative velocity to the water velocity. 
(b) PDFs of magnitude of the fish relative 
and overground velocity (green and blue 
distributions respectively) and PDF of 
water speed at fish locations computed 
from CFD model (red distribution). 
(c) PDFs of prediction errors from the 
LSTM model shown as percentage error in 
predicted direction (orange distribution) 
and magnitude (grey distribution) of 
locomotion force
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swimming velocity is greatest in the open channel, upstream of the 
bend. During high flows, relative swimming velocity is much slower in 
this same region. During high flow, the relative velocities of fish are 
smaller than the water velocity in the regions of high circulation near 
the channel bifurcation, whereas this pattern is not evident at low 
flows.

To determine the impact this spatial and flow-dependent vari-
ation in behaviour has on migration energetics, we can estimate 
the rate of power output required to achieve predicted movements 
across the domain. We do this by defining a quantity we will call 
‘locomotory scope’, SL = 1 + FL ⋅ vr∕RMR, which characterizes the 
power output required to fuel resting metabolism and locomotion, 
normalized by the resting metabolic rate (RMR; see Appendix A for 
RMR calculation). The locomotory scope is a measure of the power 
output of an animal measured in units of resting metabolic rate. Thus, 

a locomotory scope of 1 corresponds to a case where an individual 
devotes no power to locomotion, whereas a value of 5 corresponds 
to a case where the total rate of power output (including resting me-
tabolism) is five times resting metabolic rate. Note that locomotory 
scope as it is defined here is not the same as aerobic scope because 
we neglect any power loss due to inefficiencies in force production, 
and we do not consider other sources of power consumption (e.g. 
specific dynamic action) that could be relevant during migration. 
Thus, locomotory scope should be taken as a lower bound on the 
relative power output required during movements.

Our analysis of predicted locomotory scope reveals strong spa-
tial patterns in power output as well as strong differences in patterns 
across specific instances of low and high-flow conditions (Figure 5c). 
Under low-flow conditions, locomotory scope was generally below 
1.5, indicating that the power required to produce predicted 

F I G U R E  4   Trajectory prediction performance over different forecast time horizons. (a) Pdfs of the error in predicting the position of 
the fish [in body lengths] for several of the prediction horizons. The vertical line at two body lengths indicates that the mode of the error 
in predicting fish positions is well-contained for even large forecast time horizons. (b) Mean error (red) and standard deviation (black) in 
predicting the position over forecast horizon (time in seconds) and average distance travelled by the fish (scale in green [in body lengths]). 
(c) Example of a single trajectory prediction. Blue line shows observed trajectory; red points show predicted trajectory for 2 s-ahead 
predictions. (d) Zoomed into a straight section of the track (zoom 1) for 2 s-ahead prediction. Black points show an initial location of the fish 
from which the Equation 9 is initialized. Red points show predicted location 2 s-later. (e) Zoomed into a curved section of the track (zoom 2) 
for 2 s-ahead prediction. (f and g) 6 s-ahead predictions zoomed into the sections shown in (d and e) respectively. Colours and symbols in (e, 
f and g) are as in (d)
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migratory movements across the domain was generally less than half 
of the resting metabolic rate of migrants. The highest relative power 
outputs were predicted to be along the centre of the main channel, 
upstream of the channel bend and in a region of relatively high circu-
lation near the eastward channel bend (Figure 5c). In strong contrast 
to these patterns, locomotory scope during high flows was as large 
as 10 in some regions of the domain, indicating that predicted move-
ments in those regions required total power outputs 10 times higher 
than resting metabolic rate. The highest rates of power output were 
predicted to be in the region of strong flow recirculation near the 
eastward channel bend and along the eastern bank in the same re-
gion. However, even outside of these regions the locomotory scope 
exceeded a value of 1.5 throughout much of the domain. One might 
expect migrants to take advantage of strong oceanward flows in the 
high-flow conditions by drifting passively rather than swimming ac-
tively. In contrast, our model suggests that migrants generally use far 
more power under high-flow scenarios, particularly in local regions 
of strong unsteady flow. This is due, at least in part, to the fact that 
in weak flows, the locomotion force tends to be biased in alignment 
with the direction of local water flow (Appendix A), whereas in more 
powerful flows, fish locomotion is aligned opposite or orthogonal to 
the direction of local water flow.

4  | DISCUSSION

Here, we have developed a general methodology to combine quan-
titative estimates of a turbulent environment with measurements of 
the movements of animals to better understand migratory behav-
iour in the wild. Our methodology combines animal tracking data 

with high-resolution physical modelling of environmental flows—
here achieved using CFD—to estimate the dynamic flow environ-
ment migrants experience and determine the component of force 
of migratory movements due to active locomotion by the animal. 
Finally, we employ recurrent neural network methods to relate the 
physical conditions experienced by the migrant to locomotion be-
haviour, and use this model to forecast movements over times and 
conditions outside those included in the training data.

Reconstruction of the local physical environment and decom-
position of active and passive components of movement have the 
potential to offer new insights into the processes that influence 
the movements of migrating animals in complex environments. This 
approach extends recent work to characterize how migrants move 
in relation to coarser scale environmental flows such as water cur-
rents and regional wind patterns (e.g. the use of favourable pre-
vailing winds and fast air streams by migrating insects, Alerstam 
et al., 2011). Our approach also holds significant promise as a tool 
for the management of migratory species because, after careful 
testing on out-of-sample data, our framework allows one to make 
predictions about both the physical and behavioural consequences 
of modifying the migratory environment, for example, by raising 
or lowering flow, altering the bathymetry or course of the river, or 
installing equipment such as water diversion facilities along the mi-
gration route (Silva et al., 2018; Thorstad et al., 2008). Although we 
have applied our framework to migratory fish in a river system, the 
same methods could be used to understand migratory strategies 
of flying species by combining high-fidelity tracking during flight 
(Ling et  al.,  2018) with CFD modelling of environmental features 
of interest (e.g. wind turbines, Martin et al., 2017) or physical mod-
elling of turbulent convective flow in the atmospheric boundary 

F I G U R E  5   Predicted water flow, velocity ratio and locomotory scope under high (upper panels) and low (lower panels) net flow 
conditions. (a) Flow velocity field. (b) Ratio of the relative velocity of the fish to the water velocity. (c) Locomotory scope, SL. Note large 
differences in range of predicted scope between high (upper) and low (lower) flow conditions
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layer (Reddy et al., 2016). It is well known that flying animals also 
respond to local air flows (Scacco et al., 2019, Shepard et al., 2016 
and Dabiri,  1993); however, constructing and validating models 
of air flow poses some unique challenges. For example, it is often 
challenging to collect high-resolution time-varying data on air cur-
rents in the atmosphere that can be used during model validation. 
For small-scale flow phenomena such as boundary layer flows over 
localized topography and built-up areas on the order of a few hun-
dred square-metres to a few square kilometres, wind-tunnel exper-
iments over downscaled models can provide validation datasets 
for high-resolution URANS and LES models of atmospheric flow 
(e.g. Jimenez & Moser,  1998; Kellnerová et  al.,  2018). For flows 
distributed over larger open areas, on the order of tens of square 
kilometres, a combination of wind vane, flux tower and LiDAR and 
Radar measurements may be used to produce reliable estimates of 
the air currents (Friedrich et al., 2012; Madala et al., 2015). A more 
recent alternate strategy has been to dynamically downscale global 
circulation models to spatial–temporal resolutions required for 
regional-scale analysis and validate these downscaled models using 
a regional network of weather stations (Wagenbrenner et al., 2016; 
Winstral et al., 2017). For many physical modelling methods, open 
source software packages are readily available (e.g. openFoam), as 
are packages for constructing statistical models (e.g. R, TensorFlow) 
of migration behaviour once the locomotion component of migra-
tory movements has been computed (Figure 1e,f).

Computational fluid dynamics, and computational modelling of 
the flow environment more generally, have already proven to be use-
ful for studying environmental flows in the context of animal migra-
tions. For example, Gisen et al.  (2016) developed a 3D CFD model 
of a hydropower dam tailrace using a Detached-Eddy Simulation 
is the conventional case to evaluate impacts on migrants. Reddy 
et  al.  (2016) developed a computational model of thermals in the 
atmospheric boundary layer to study how soaring birds navigate 
complex turbulent motion of air. Gualtieri et al. (2019) modelled fish 
migration through a river system as particles characterized by two 
bioenergetic parameters, one related to the drag force a fish expe-
rienced and one related to the energy needed by a fish to remain 
in a specific location. Similar assumptions were adopted by Ramón 
et  al.  (2018) who studied the hydrodynamic drivers of juvenile 
salmon movements using CFD to compute the flow field across a 
river system. Although Gualtieri et al. (2019) and Ramón et al. (2018) 
modelled fish as passive particles dragged by the river flow, as we 
show here, even small migratory fish can swim very actively, and in 
many cases, their locomotion force production is significant. Indeed, 
our analysis of relative velocity of fish and water (Figure 5) shows 
that the component of ground speed due to active locomotion is 
often greater in magnitude than the water speed, even in relatively 
fast flows. Our findings corroborate results from other systems (e.g. 
Arenas et al., 2015), and suggest more generally that even small mi-
gratory animals such as the juvenile salmon considered here (mean 
length 112 mm) spend significant amounts of energy on locomotion, 
even when the net direction of environmental flow aligns with the 
direction of migration.

Several researchers have begun using CFD models to attempt to 
understand how migrants navigate complex physical environments 
at spatial and temporal resolutions similar to those considered in our 
study. For instance, Goodwin et al. (2014) used a steady-state RANS 
CFD model to compute water field velocity in combination with an 
ad hoc fish behavioural model to represent fish movements in the 
vicinity of hydropower facilities. Gao et al. (2015) used a similar ap-
proach for a slot fishway, applying a parametric model of fish move-
ment. Martin et al. (2017) combined a CFD model of a wind turbine 
and aerodynamic modelling of bat flight to understand how flying 
bats might interact with the forces produced by wind turbines. In 
the present study, we extended the approaches of these past mod-
els by developing a URANS CFD model to compute time-dependent 
flow variables. We employed a time-dependent CFD model because 
the flow field through complex channel morphologies like the one 
studied here can be extremely dynamic, particularly in river and es-
tuary systems where flows can change due to a variety of reasons 
including precipitation, effects of tides, sudden storms and floods, 
and local water diversions and runoff. A dynamic, time-varying CFD 
model allows us to model changes in flows that occur as inflows 
change. In general, a dynamic model will be necessary to correctly 
decompose drag and locomotion forces when the flow field changes 
appreciably over time. Not accounting for changes in flow will lead 
to biased estimates of these components.

After we validated that model against empirical flow measure-
ments, we used flow estimates, along with observed fish migration 
trajectories, to infer the drag and locomotory forces that produced 
observed fish accelerations. Rather than prescribing an ad hoc 
model of locomotion behaviour, we used a flexible recurrent neu-
ral network model (the LSTM-NN) to describe how flow cues and 
past behaviour influence locomotion behaviour in the near future. 
Importantly, this approach provides accurate near-term forecasts 
of migrant behaviour on out-of-sample data. Thus, our model both 
captures observed patterns of locomotion in complex flows, and is 
capable of making accurate out-of-sample predictions to evaluate 
hypothesis about the implications of migratory behaviour across 
space and over ranges of environmental conditions (e.g. Figure 5).

To predict swimming behaviour, we relied on a flexible mul-
tivariate time-series method. Multivariate time-series analysis 
methods such as the LSTM-NN have become popular in many 
fields including health care (Kang & Choi, 2014), phoneme classi-
fication (Kang & Choi, 2005), and activity and action recognition 
(Fu, 2015; Geurts, 2001; Pavlovic et al., 1999; Yu & Lee, 2015). In 
our analysis, the LSTM-NN model of swimming behaviour revealed 
that knowledge of the flow environment the animal experiences 
as it moves can allow one to make accurate out-of-sample fore-
casts of a fish's future movements, at least over short time-scales 
(e.g. 2  s–30  s). This suggests not only that features of the flow 
influence the movement decisions animals make as they migrate 
(Liao, 2007; Oteiza et al., 2017), but also that the behavioural rules 
or ‘behavioural algorithms’ (Hein et al., 2020) that relate flow to 
locomotion behaviour are at least reasonably similar, both across 
individual animals, and over the range of time periods included in 
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our study. We believe this workflow of building data-driven mod-
els of behaviour and validating predictions of those models on 
out-of-sample data is crucial, given that our understanding of how 
animals perceive and respond to sensory cues during migration 
is still far from complete. The flexibility of recurrent neural net-
works frees our approach, at least to some extent, from assump-
tions about the precise functional form relating flow variables to 
the swimming behaviour of migrants. However, one disadvantage 
of using a highly flexible framework like LSTM-NN to relate envi-
ronmental variables to fish behaviour is that, due to the complex-
ity of the neural network model structure, there is no compact 
symbolic representation of the functional relationships between 
input and output variables (Martin et al., 2018). We expect future 
studies will unpack the patterns described phenomenologically 
by our LSTM-NN model of movement behaviour. In particular, it 
will be insightful to determine whether migration behaviour, like 
some other animal behaviours including predator evasion (Hein 
et al., 2018) and prey interception (Brighton et al., 2017), can be 
described accurately by a set of relatively simple control algo-
rithms (Hein et al., 2020). Future work could apply other modelling 
paradigms (e.g. control theory, neuro-ecological modelling; Bar 
et al., 2015; Brighton et al., 2017) to address this and other fun-
damental questions, including (a) which variables most influence 
locomotion, (b) whether migratory behaviour varies appreciably 
over time and (c) the extent to which different individuals respond 
to environmental variables in different ways. Notably, all of these 
questions require estimates of both the behavioural actions taken 
by individual migrants and the environmental variables experi-
enced by those individuals. Our methodology provides a way to 
acquire such estimates.

While the overall methodology presented here holds much 
promise, it nevertheless has important limitations. Firstly, due 
to computational limitations on the simulation of turbulent flow, 
the spatial and temporal resolution of our CFD model is limited. 
This means that we cannot resolve fine-scale flow at the scale of 
the migrating fish's body, nor can we fully resolve temporal fluc-
tuations in flow due to turbulence. This makes it challenging to 
directly link our model of locomotion behaviour with biomechani-
cal (e.g. Bandyopadhyay, 2002; Cui et al., 2017; Lighthill, 1971) or 
behavioural models (e.g. Oteiza et al., 2017) that describe move-
ment of the migrant's body. Nevertheless, our model does have 
the ability to resolve larger features in the flow on the spatial scale 
of tens of body lengths. Such features include gradients in water 
velocity near channel banks and zones of strong recirculation (e.g. 
see Figure 2). This allowed us to conclude, for example, that ef-
fects of these features on migratory behaviour can be significant 
(Figure 5). A second limitation of our approach is due to the track-
ing data themselves. Tracking data were acquired through hydro-
phone detections of animals implanted with acoustic transmitters. 
These data therefore have limited spatial resolution and the sta-
tus of tagged animals are unknown (e.g. tags from fish consumed 
by larger predatory fish can still be detected by the hydrophone 
array). Such limitations are worth considering when choosing a tag 

technology to use for studies that will combine tracking and phys-
ical modelling to study migratory movement behaviour. Another 
important consideration is that our framework cannot fully ad-
dress the question of whether high- or low-flow conditions are 
more favourable for migration because it does not consider how 
energy use trades off with other potentially important quanti-
ties related to migration success such as the travel time through 
regions of high predation risk (Anderson et al., 2005). The times 
taken by fish to traverse our entire study region were longer, on 
average, when overall flow was weak (mean of 63 min for trajec-
tories experiencing the weakest 10% of flows) than when over-
all flow was strong (mean of 51 min for trajectories experiencing 
strongest 10% of flows). However, variability in this trend was sig-
nificant. Nevertheless, travel time and other trade-offs could be 
included in our framework by integrating additional data sources 
(e.g. predation risk data).

Despite its limitations, our framework can be used to gain 
traction on questions that have fascinated migration biologists 
for many years. Many such questions relate to how migrants use 
energy as they move through a landscape. As demonstrated in 
Figure  5, our methodology has much potential to address these 
types of questions. For example, when applied to distinct environ-
mental conditions observed in our dataset, locomotion force pre-
dictions revealed that fish generally spend far more energy moving 
through the landscape when the overall rate of flow is high than 
when the rate of flow is low, despite the fact that the net flow 
direction is aligned with the direction of migration. Our analysis 
provides additional insights into the cause of this pattern; when 
fish swim in slow currents, their movements are generally oriented 
uniformly relative to the flow with a slight bias towards alignment 
in the direction of flow (see Appendix A). On the other hand, when 
migrants move through high-speed currents, their movements are 
primarily oriented against the flow or laterally relative to the direc-
tion of flow. These lateral and opposing movements require greater 
power output. It is also important to note our methodology is in 
no way limited to the study of migratory movements. Both swim-
ming and flying animals modulate short-term movement behaviour 
in response to local environmental flows (James,  2007; Scacco 
et  al.,  2019, Shepard et  al.,  2016). The same methodology pre-
sented here can be applied to study animal movement behaviours 
beyond the context of migration.

In this work, we have presented a general methodology for merg-
ing data and modelling of environmental currents with tracking data 
to understand animal migratory behaviour. Our approach extends 
more traditional methods in migration biology, which have often ei-
ther ignored interactions with wind and water currents, or modelled 
these interactions in simple ways that are not fully informed by phys-
ical data (e.g. Alexander, 1998; Hein et al., 2012; Pennycuick, 2003; 
Stier et  al.,  2014). We believe our framework has the potential to 
shed new light on how migrants interact with wind and water cur-
rents and how behaviour and biophysics interact to determine the 
costs and benefits of different migratory strategies and environmen-
tal conditions.
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