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Ecologists have long sought to understand the dynamics of populations and
communities by deriving mathematical theory from first principles. Theoretical
models often take the form of dynamical equations that comprise the ecological
processes (e.g. competition, predation) believed to govern system dynamics.
The inverse of this approach—inferring which processes and ecological
interactions drive observed dynamics—remains an open problem in ecology.
Here, we propose a way to attack this problem using a machine learning
method known as symbolic regression, which seeks to discover relationships in
time-series data and to express those relationships using dynamical equations.
We found that this method could rapidly discover models that explained most
of the variance in three classic demographic time series. More importantly, it
reverse-engineered the models previously proposed by theoretical ecologists
to describe these time series, capturing the core ecological processes these
models describe and their functional forms. Our findings suggest a potentially
powerful new way to merge theory development and data analysis.

1. Introduction
Since the early 1800s, theoretical ecologists have sought to understand eco-
logical dynamics by deriving mathematical models from assumptions about
how living things grow, reproduce and interact [1–5]. The practice of building
such models has changed little since the early days of theoretical ecology; one
begins with hypotheses about which biological processes influence the system
at hand, and refines this intuition by expressing it in mathematical form, for
example, as a set of differential equations or scaling relationships. An important
feature of such models is their modularity: an equation describing the dynamics
of a given population typically contains distinct components, each of which
represents a different biological process. By formulating models in this way
and comparing them to data, ecologists have discovered how core processes
such as species competition [6], ontogenetic growth [4] and predation [2,3,5]
govern the dynamics of a wide range of ecological systems. Moreover, math-
ematical analysis of these models has led to the discovery of emergent
dynamics such as chaos, the paradox of enrichment, apparent competition
and biomass overcompensation [7–10].

One of the challenges with developing theoretical models in this way is that
doing so requires knowledge of the kinds of interactions that are most important
in governing dynamics of a system of interest and the functional forms that describe
those interactions. Developing a model in this way might be described as forward-
engineering. By contrast, in many ecological systems, the structure and nature of
interactions are not known a priori and the primary challenge is reverse-engineering
these relationships from data. Recently, researchers in the field of artificial intelli-
gence have proposed methods to infer dynamical relationships among variables
in a system directly from time-series data [11–14]. For example, Schmidt &
Lipson [11] showed that a method known as symbolic regression could discover
the fundamental equations of Newtonian mechanics directly from measurements
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of moving objects. Similar methods have been used to reverse-
engineer the dynamics of other physical systems [12–14].

In contrast to traditional regression, where the analyst spe-
cifies a functional form and optimizes its free parameters,
symbolic regression searches the vast space of possible func-
tional forms to arrive at a parsimonious description of the
data. Though this method has rarely been applied to biologi-
cal data [15,16], its success in physical systems suggests the
intriguing possibility that it might be useful for inferring eco-
logical relationships from demographic time series. Because
symbolic regression can describe relationships using dynami-
cal equations, it also has the potential to bridge an important
gap between statistical analysis and theoretical ecology; it
shares the flexibility of semi-parametric methods that are
familiar to ecologists (e.g. General Additive Models (GAMs)
[17], Gaussian processes [18] and neural networks [19]), while
retaining the intuition one can gain by posing biological hypoth-
eses as dynamical equations—the language of theoretical
ecology. The value of such equations is that they can potentially
be deconstructed to determine which core ecological processes
they describe, and they can be analysed to gain insights about
emergent properties that may not be obvious from the data alone.

In this paper, we apply symbolic regression to several
classic demographic datasets whose dynamics are thought
to be driven by canonical ecological processes including
self-regulation, predation and cannibalism. We test whether
symbolic regression can infer these processes and their
functional forms directly from time-series data. We find the fol-
lowing: (1) symbolic regression discovers dynamical models
that explain most of the variance in all three population
dynamic datasets, (2) the predictive ability of models generated
through this procedure begins to saturate with increasing
model complexity, defined as the number of free parameters
in the model, at a surprisingly small number of free parameters
in all datasets, (3) for each of the three datasets, the model
occupying the saturation point, where increases in model com-
plexity cease to substantially improve predictive capacity,
contained the same ecological processes as models previously
proposed by theoretical ecologists. In fact, the models occupy-
ing the saturation point were precisely the logistic growth
equation for Paramecium growing in isolation [1,20], the
Lotka–Volterra predator–prey equations for Paramecium and
Didinium in co-culture [2,3,20], and a chaotic stage-structured
population model for Tribolium flour beetles [21].

2. Material and methods
(a) How symbolic regression works
Symbolic regression is used to find mathematical equations that
best describe the relationships among variables in a dataset
[22,23]. To begin, a ‘population’ of equations is generated from a
set of mathematical building blocks (i.e. mathematical operators
[e.g.þ, 2,", 4, log, exp], variables and constants). These building
blocks are combined using a tree-like network, where each node in
the tree represents an operator, a state variable or a free parameter
(figure 1). Operator nodes accept a specific number of input argu-
ments [23], for example, multiplication requires two arguments
(A " B), whereas exponentiation requires only one argument
(exp[A]). Variables and free parameters (also referred to as ‘con-
stants’ in the symbolic regression literature) are terminal nodes
in the tree (figure 1). In this way, building blocks can be combined
to build mathematical expressions that vary widely in form
and complexity.

After a large initial population of expressions is randomly gen-
erated, the ability of each to accurately describe data is assessed
and the next generation of models is created using an evolutionary
algorithm: models are selected based on a pre-defined measure of
goodness-of-fit; then a reproduction stage occurs, in which
selected models generate new models either via crossover, where
two selected models produce two new models by exchanging
random subtrees, or mutation, where a randomly selected subtree
of a model is replaced with a new subtree (see ‘Implementing
Symbolic Regression’ for further details).

Because goodness-of-fit tends to increase with model complex-
ity, modern model selection criteria typically use a penalty for
complexity when identifying the best model (e.g. Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC),
etc.). Although it is possible to identify the optimal penalization
scheme for a limited class of models (e.g. linear regressions with
normal errors) it is not possible to identify the optimal trade-off
for an arbitrary class of models. Rather, symbolic regression
seeks to find what is known as the Pareto front—the set of
models that have the best goodness-of-fit for each level of model
complexity. A major advantage of symbolic regression is that it
allows one to thoroughly sample models that occur near this
front, thereby defining (rather than assuming) the trade-off
between model performance and complexity.

(b) Datasets
We applied symbolic regression to three classic ecological datasets.
The first dataset consisted of four time series, each from a
Paramecium population grown at one of four different nutrient (Cer-
ophyl) concentrations (0.1, 0.375, 0.5 and 1.0 g l21, [20]). In each
experiment, Paramecium populations were initialized at small popu-
lation sizes and monitored for 7 days. Population density was
recorded every 12 h. We numerically estimated time-derivatives
of Paramecium population density using a cubic spline with a rough-
ness penalty on the integral of the squared second derivative
determined by generalized cross validation (smooth.spline, [24]).
Paramecium population density and nutrient concentration were
used as predictor variables. These in combination with free par-
ameters made up the ‘terminal nodes’ in the symbolic regression.

In the second dataset, Paramecium and a predator, Didinium,
were grown in co-culture for a 35 day period at a nutrient
concentration of 0.5 g l21 [20]. The densities of Paramecium and
Didinium were recorded every 12 h. Again, we numerically esti-
mated derivatives for both populations using cubic splines. We
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Figure 1. Generating dynamical equations from primitive operators using a
tree-based encoding. Here, the Lotka – Volterra equation for a prey population
is represented as a tree expression, which can be encoded as a function by eval-
uating the expression tree sequentially from the terminal nodes up. The
equation can also be represented as a string, and mutated or recombined
with other strings to generate enormous sets of mathematical equations
from simple building blocks of operators, constants and independent variables.
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used Paramecium and Didinium densities as potential predictor
variables in the symbolic regression, which along with free
parameters can occur as terminal nodes.

The final dataset documented stage-structured population
dynamics of the flour beetle, Tribolium [21,25]. The data consisted
of time series of abundances of three life stages (larvae, pupae and
adults) of populations maintained in milk bottles over a period of
80 weeks. In these experiments, Costantino et al. [21] experimen-
tally set the adult-dependent pupae-to-adult recruitment rate,
cpa, at one of seven levels (0.00, 0.05, 0.10, 0.25, 0.35, 0.50, 1.00),
with three replicate time series per treatment, where exp(2cpa "
adult density) is the probability of a pupa recruiting to an adult
in the presence of adults. Both ma and cpa were experimentally con-
trolled by removing or adding adults at the time of census, which
occurred every two weeks. The two-week measurement interval
coincided with the approximate duration of the larvae and
pupae stages. Because of the relatively discrete life stages, Costan-
tino et al. [21] modelled the dynamics of Tribolium using a system of
difference equations. We used symbolic regression to predict the
number of Tribolium larvae in the ithþ1 time step as a function
of the abundances of the three life stages in the ith time step and
the cpa variable. We focus on the larval-stage population dynamics
because predicting larval dynamics is not trivial, whereas pupal
abundance at the ithþ1 time step is nearly a constant proportion
of larvae abundance in the ith time step and adult dynamics, as
described above, were manipulated as part of the experiment [21].

(c) Reverse-engineering dynamical relationships
from data

Using the Paramecium–Didinium co-culture as an example, we
begin with raw population time series (figure 2a) and convert

population densities to changes in density over time (figure 2b).
We then apply symbolic regression to generate an initial
population of models, fit these models to data and generate sub-
sequent model generations based on model performance. This
routine resulted in a large set of dynamical expressions that vary
in complexity and goodness-of-fit (figure 2b, lines). With these
models in hand, we can examine the relationship between good-
ness-of-fit and model complexity (figure 2c) to identify the
models that fall along the Pareto front. This provides several valu-
able pieces of information, including the limits to goodness-of-fit
for this dataset, and the minimum level of complexity required
to approach this limit (figure 2c, orange saturating Pareto front).
Finally, we can use the set of Pareto front models (or any other
subset of models) to forecast population dynamics (figure 2d).

(d) Implementing symbolic regression
We developed a genetic programme to implement symbolic
regression and applied this method to the three datasets. Our
implementation was based on the GPtips [26] package in MATLAB

but differed in several important ways: we enforced dimensional
consistency, we compressed unidentifiable parameters when
computing model complexity, and we performed nonlinear
optimization for each candidate expression using a robust optimiz-
ation algorithm called restricted back-propagation (described
below; [27]).

(i) Dimensional consistency
A key feature of any model of a physical system is that the units of
the quantities in the model must be dimensionally consistent in the
sense that if two objects are added to one another, they must have
the same dimensions; if they are multiplied, the dimension of the
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Figure 2. Discovering dynamical relationships from data—a raw time series (e.g. of population counts) is converted to a time series of derivatives or differences
(e.g. population growth rates). Then a genetic programme is used to generate dynamical equations that are fitted to the derivative time series (b). This routine
results in a large set of dynamical expressions that vary in complexity and goodness-of-fit (c), allowing one to identify the models that fall along the Pareto front.
Finally, a subset of models (e.g. the Pareto front models) can be used to forecast population dynamics (d ). Panel d shows three-step-ahead predictions from the
ordinary differential equation (ODE) models along the Pareto front for the Paramecium and Didinium co-culture datasets. In general, predictions by models in the
Pareto front with two or more parameters were similar, consistent with the relationship between goodness-of-fit and model complexity (c).
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product must change accordingly. To enforce dimensional consist-
ency, we multiplied all state variables by a free parameter. All terms
that are inherently non-dimensional (e.g. exponential and logarith-
mic terms) were also multiplied by a free parameter. The implicit
dimensions of free parameters ensure that all models produced
by the genetic programme were dimensionally consistent.

(ii) Constant compression
Randomly placing free parameters within strings using tree gener-
ation inevitably creates unidentifiable models. For example,
applying the addition operator to parameters b1 and b2 results
in an expression (b1 þ b2) that can be satisfied by an infinite
number of values of each of these parameters. We developed a
string-based routine to reduce the occurrence of unidentifiable
expressions by compressing them into a single parameter. Because
of the diverse range of models that can be created by the tree rou-
tine, unidentifiable parameter combinations still occasionally
occur. To ensure that we correctly determined the number of ident-
ifiable free parameters for each model, we evaluated the rank of the
derivative matrix of each model,

A ¼ @mi

@uj

! "
, ð2:1Þ

where m is a vector of the expected value of the model at each
observation, and u is the vector of parameters in the model. The
true number of parameters in a model is equal to the rank of A [28].

(iii) Optimization
Because free parameters could occur both as linear coefficients
and as nonlinear terms, we used a nonlinear optimization
scheme to estimate parameter values. Standard Nelder–Mead
simplex algorithms performed slowly, particularly for models
with many parameters. Instead, we used an alternative optimiz-
ation scheme—restricted back-propagation (Rprop, [27])—which
performed more rapidly and more robustly.

We used a standard evolutionary algorithm for our imple-
mentation of symbolic regression [22,26]. We briefly outline
the algorithm below and provide the code in the electronic
supplementary material, but for a detailed description of the stan-
dard evolutionary algorithm used in genetic programming, see
Koza [22] and Poli et al. [23]. Each generation, the top 5% of
models (see ‘Evaluating model fit’) were directly copied to the
next generation. The remaining 95% of models were selected for
the next generation using tournament selection [22,23], whereby
two models were randomly selected from the population, their
goodness-of-fit was compared, and the model with the lowest
residual sum of squares was selected to contribute to the next gen-
eration. The next generation of models was constructed either
through crossover ( p ¼ 0.75) or via mutation ( p ¼ 0.2), or direct
reproduction (also referred to as ‘cloning’; p ¼ 0.05). For both Para-
mecium and Didinium datasets, preliminary runs indicated a
population size of approximately 2500 models and 20 generations
was sufficient to generate models across the range of model com-
plexities that interested us (i.e. 1–8 free parameters). More
generations (40) were used for the Tribolium dataset because it
took longer for symbolic regression runs to discover complex
models (greater than 6 free parameters) that fit the data well.
This is likely because a larger fraction of the initial models gener-
ated for that dataset produced models with undefined model
predictions (e.g. division or log of independent variables with a
value of 0) or likelihoods (predicted densities less than 0 produced
undefined likelihoods due to the error model used for the Tribolium
dataset [see ‘Evaluating model fit’]). For each dataset, we per-
formed three symbolic regression runs, each starting with a
different initial population of models to better explore the space
of possible models. We constructed Pareto fronts by combining
all models into a single model set. For all analyses, we used the
operators þ, 2, ", 4, ln, and exp as our initial operator set. This

operator set is sufficient to generate virtually all commonly used
population models except those with periodic forcing.

(e) Evaluating model fit
For each dataset, we computed derivatives or differences as
described above, and then selected a random 30% of data points
to serve as out-of-sample data. We performed symbolic regression
on the remaining 70% of the data. Parameter estimation and
model fitness were calculated using these in-sample data only.
For the Paramecium in isolation and Paramecium and Didinium in
co-culture datasets, we assumed additive, normally distributed
errors and used the residual sum-of-squares (RSS) as a measure
of model fit. For the Tribolium dataset, we used the likelihood
derived by Dennis et al. [25] in their original analysis of this data-
set. That is, we used a normal approximation of a Poisson
distribution by square-root transforming the model predictions
and observations to normalize and stabilize the variance, and
then used the residual RSS on the transformed data as a measure
of model fit (see [25] for a more rigorous justification of this error
model). For all fitted models, we computed model log likelihood
and r2 to evaluate in-sample performance.

We performed the entire symbolic regression procedure
twice, in each case taking a random subset of 70% of the data
as in-sample, and the remaining 30% as out-of-sample. Repeating
this procedure twice and taking the average out-of-sample per-
formance for models on the Pareto front ensured that results
were robust to the particular random subsets of data chosen as
in-sample and out-of-sample.

( f ) Variable importance and model averaging
Previous applications of symbolic regression tend to focus on a
single ‘optimal’ model structure. While we do make the compari-
son between ecological theory and specific models on the Pareto
front (see below), there is much to be gained by combining the
tools of symbolic regression and current approaches to multi-
model inference (e.g. [29]). For instance, ecologists are often
interested in general inferences about the relationships among
state variables; for example, is X useful for predicting Y? If so,
what kind of function relates the two? These questions can be
answered using the model set generated by symbolic regression.
To do this, we define a conditional effect size:

gjY, X ¼ 1
N

XN

i¼1

jf ðXi, yiÞ & f ðXi, !yÞj, ð2:2Þ

where Y is the vector of observed values of the variable of interest,
X is a matrix containing observed values of all other state variables
in the model, yi is the ith observation of the state variable of inter-
est, !y is the mean value of Y over all observations, Xi is a vector of
other state variables in the model associated with the ith obser-
vation, and f is the model. We refer to this as a conditional effect
size to emphasize that its value is conditional on the observed
values of Y and X. Note that the mean serves only as a reference
point; different statistics or quantiles could be used as reference
points instead. As a frame of reference, note that if the fitted
model were a multiple linear regression with slope parameters
b1, . . . bp then gk ¼ bkM1k (where gk is the conditional effect size
for variable k and M1k is the first absolute moment for variable
k), which is the expected change in the output for a one standard
deviation change in the input. To illustrate how conditional
effect size can be used to make inferences about the importance
of different candidate predictor variables, we applied it to the
Tribolium dataset discussed above.

3. Results
In all three datasets, symbolic regression discovered dynamical
rules that explained most of the variance in the data (figure 3).
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In the Paramecium monoculture dataset, the best model
explained 95% of the variance. In the Paramecium and Didinium
datasets, the best models explained 92 and 84% of the variance,
respectively. For the Tribolium stage-structured population
dynamics dataset, the best model explained 92% of the var-
iance in larval abundances in the next time step. Model
goodness-of-fit increased rapidly in all three datasets as we
increased the number of parameters up to two or three par-
ameters. Beyond this point, increasing model complexity
resulted in relatively small improvements in model perform-
ance. For example, in the case of the Tribolium larvae, moving
from the best model with two free parameters to the best
model with three free parameters increased r2 from 0.58 to
0.91 and model log-likelihood of 463.7 units. While the best
model, with eight free parameters, only improved r2 to 0.92
and increased the log likelihood by only 35.5 units compared
to the best three-parameter model.

The fact that model performance saturated quickly with
increasing model complexity in all of the datasets to which
we applied our method demonstrates that there exist simple
models that describe population dynamics nearly as well as
much more complex ones. This implies that a relatively small
number of core processes determine population dynamics in
these systems. The next natural question, then, is whether the
simple models that capture dynamics represent biologically
plausible hypotheses about the mechanisms that underlie
these dynamics. For Paramecium growing at different nutrient
concentrations without a predator, model fit saturates at
roughly two parameters (figure 3a). The two-parameter
model on the Pareto front, dP/dt ¼ b1NP 2 b2P2, states that
Paramecium dynamics are governed by two terms; the first

term on the right-hand side of the equation can be interpreted
as a per capita growth rate that increases linearly with nutrient
level, N. The second term can be interpreted as a linear decrease
in per capita growth rate as Paramecium density, P, increases.
This model is an alternative parametrization of the resource-
dependent logistic equation where the maximum per capita
growth rate, r is b1N, and the carrying capacity K is b1N/b2.
Similarly, for Paramecium and Didinium in co-culture, model
fit began to saturate at two parameters, and the two-parameter
models occupying the Pareto front were the Lotka–Volterra
equations for predator–prey populations: dP/dt ¼ b1P 2

b2PD, and dD/dt ¼ b3PD 2 b4D, which include terms that
represent reproduction, predation and natural mortality. In
the case of both datasets, these relatively simple models have
similar performance to the more complex Pareto front models
when predicting out-of-sample data (figure 3, orange points).

Since the logistic and Lotka–Volterra models describe
reproduction, self-regulation, predation and mortality as
linear combinations of polynomial terms, one could argue
that these models could have been reverse-engineered through
more conventional means such as polynomial regression. The
dynamics of Tribolium populations are more complex as this
species exhibits multiple life stages and chaotic dynamics.
Nevertheless, model fit began to saturate at three parameters
(figure 3d). The best three-parameter model, Ltþ1 ¼ b1At

exp(2b2At2b3Lt), is strongly nonlinear and cannot be
expressed as a sum of polynomials. Costantino et al. [21]
derived precisely this model structure from a set of exper-
iments on individual life stages to determine which processes
dominated population dynamics and to identify the functional
forms that describe these processes. In their interpretation of
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Figure 3. Model r2 (left axis) and log likelihood (right axis) for fitted models. Each blue point is the fit of a single model. Points are jittered in the horizontal
direction for visualization. Red points denote the best model at each level of complexity. For each of the three datasets, the model occupying the saturation point
where increases in model complexity cease to substantially improve predictive capacity (grey circle) was the model previously proposed by theoretical ecologists: the
logistic growth equation for Paramecium growing in isolation (a), the Lotka – Volterra predator – prey equations for Paramecium (b) and Didinium (c) in co-culture,
and a chaotic stage-structured population model for Tribolium flour beetles (d ). Orange points are mean r2 of Pareto front models computed from out-of-sample
data.
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the model, the number of larvae at time, t þ 1, depends on the
product of the number of eggs produced by adults at time, t,
and the survival probability of those eggs to time, t þ 1. The
survival probability of eggs is governed by the exponentiation
of instantaneous mortality rates that are linearly dependent on
the abundance of adults and larvae, consistent with the
hypothesis that both adults and larvae are cannibalistic. As
in the other datasets, this relatively simple model performed
as well on out-of-sample data as more complex models
(figure 3d, orange points).

In addition to identifying the mathematical expressions
that best capture dynamics, we used the entire set of models
generated by the symbolic regression to evaluate the overall
importance of each candidate predictor variable in governing
the observed population dynamics. In the Tribolium dataset
(figure 4a), models that fit the data well have small conditional
effect sizes (equation (2.2)) for cpa and pupae, and large effect
sizes for larvae and adults, indicating that larval dynamics

are not strongly influenced by cpa or pupae regardless of the
functional form assumed to link these variables to larval popu-
lation growth. The conditional effect sizes of adult and larval
abundance converge to stable values among models that fit
the data well (figure 4a). This indicates two important features
of the model set: (1) good models agree that these two variables
are the ones that drive larval population dynamics, and (2) they
also agree on the magnitude of the effect of these variables for
the dataset at hand. In addition to agreeing on which variables
were most important in governing Tribolium dynamics, models
also agree on the shape of the relationship that relates state
variables to one another (figure 4b).

4. Discussion
By extensively searching the space of plausible models, sym-
bolic regression quantifies how the amount of explainable
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Figure 4. Conditional effect size (see text) and the shape of functional relationships for the Tribolium dataset. (a) Conditional effect size of each of the four state
variables as a function of model log likelihood for over 40 000 fitted models. For two of the four variables (the pupa-to-adult recruitment rate, cpa and pupa
abundance), effect size is highly variable in poorly performing models, and converges to low values in the best models. For the other two variables (larvae abun-
dance and adult abundance), conditional effect sizes converge to positive values in models with the highest log likelihoods, revealing that models with different
structures agree on the importance of these variables and the magnitude of their effects on larval recruitment dynamics. (b) Solid curves show AIC-weighted
prediction of larval abundance at time t þ 1 from the full set of fitted models. In the left panel the three curves show the model predictions when adult
(left panel) or larvae (right panel) abundance at time t is held to its 25th (blue), 50th (teal) or 75th (red) percentile value. Pupae abundance and cpa are
held to their median values in both panels. Envelopes show upper and lower bounds on predictions of models with AIC weights greater than 0.01 (19
models). Agreement in model shape indicates that the best performing models predicted similar structural relationships between larval dynamics and state variables
except at very high values of adult density, where there was limited data.
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variance scales with model complexity along the Pareto front,
and allows us to identify the ecological processes that appear
to drive dynamics of these populations. For all three demo-
graphic datasets, the model that occurred at the point on the
Pareto front where model fit began to saturate with increasing
model complexity was exactly the model previously proposed
by theoretical ecologists to describe these dynamics. It is impor-
tant to point out that this is not by any means guaranteed. The
theoretical models were derived under an additional constraint
that cannot be enforced in the symbolic regression: these
models only contain mathematical expressions that represent
biologically plausible hypotheses. The set of models that meet
this constraint is a small fraction of the universe of models
that are algebraically and dimensionally consistent. Given
this, it is encouraging that models with biologically meaningful
structures occurred on the Pareto front.

(a) Is symbolic regression a useful method for
reverse-engineering dynamical relationships
in ecological data?

By applying symbolic regression to well-studied single-species
and predator–prey systems, we were able to test whether this
method could discover the core biological processes such as
self-regulation, predation and cannibalism that are central to
classical theories of population dynamics. The fact that the
method was successful, suggests that it may be useful in other
biological systems where the processes that drive dynamics
are not well understood. To put it another way, had the logistic
population model, Lotka–Volterra equations, and stage-
structured population growth model not yet been developed,
the routine we applied would have reverse-engineered them
without any foreknowledge of the underlying biological pro-
cesses these models represent. Several obvious areas where
this approach could be useful are (1) discovering interactions
in food webs from population data [30], (2) inferring the behav-
ioural rules animals use to respond to sensory stimuli [31], and
(3) relating temperature and other environmental variables to
vital rates in wild populations [32].

(b) How can symbolic regression be used alongside
more traditional methods of theory development?

In ecology, as in other disciplines, theory is judged on several
grounds at the same time. Does the theory rest on well-
established or at least plausible descriptions of how the
system works? Is the theory self-consistent in the sense that it
does not contain elements or assumptions that contradict one
another? How good is the theory at describing data? How
well does the theory perform relative to competing theories?
Our approach does not attempt to answer the first two ques-
tions, which, we emphasize, are still fundamental when
evaluating any theoretical description of a natural system.
However, symbolic regression does offer a powerful and objec-
tive way of answering the second two questions. Comparing
models that represent alternative descriptions of the data has
become standard practice in ecology, due in large part to a
well-deserved backlash against significance testing [33]. How-
ever, a shortcoming of most multi-model comparisons is the
curse of relativism: every set of models contains a best model,
rendering judgments about whether a model is good or bad
highly dependent on the set of models being considered. By

placing theoretical models in a performance space comprised
tens-of-thousands of alternative models, we were able to evalu-
ate them against the maximum performance such models
can achieve. This is useful when evaluating whether added
model complexity is warranted. For example, Chen et al.
applied symbolic regression to the same Paramecium and Didi-
nium dataset used here [16] and focused on a model containing
four time lags and 16 free parameters to describe coupled
dynamics of the two species in co-culture. While such complex
models might be required for some purposes, our analyses
suggest that far simpler models can explain the majority of var-
iance in this and other datasets. More generally, measuring the
trade-off between complexity and goodness-of-fit across a
large and diverse model set can be used to answer the question
of ‘how good is good’ in a more objective way.

(c) How can symbolic regression be used in ecological
data analysis?

The fraction of ecological systems for which theoreticians have
derived putative governing equations is vanishingly small. As a
result, ecologists often use statistical models to make inferences
about the patterns present in data. Modern statistical methods
provide a multitude of new tools for doing this [17–19]; semi-
parametric methods including GAMs, Gaussian processes
and neural networks can accommodate nonlinear relationships
among state variables that are unknown in advance. The flexi-
bility of these methods is appealing, because in most
ecological systems, we do not know the functional forms that
describe the dynamical relationships among variables, and
assuming the incorrect form can strongly bias inference. The
disadvantage of these methods, however, is that breaking
their output into ecologically meaningful components—for
example, components that represent predation, competition,
cannibalism, etc.—can be extremely difficult. In contrast to
these methods, symbolic regression describes data-driven func-
tional relationships using explicit equations, rather than
networks or basis expansions. Our analyses illustrate one of
the major advantages of symbolic regression over alternative
methods: if simple nonlinear expressions that accurately
describe dynamics exist, symbolic regression can discover them.

Even if the goal of analysis is prediction or determining
variable importance rather than identifying functional relation-
ships, symbolic regression has some distinct advantages over
more traditional methods of multi-model inference. For
example, analysing effect sizes of variables across the full
model set provides a way of evaluating variable importance
without preconditioning on a particular model structure
(figure 4a). This is a generalization of the idea of measuring
effect sizes in linear models using standardized coefficients.
Similarly, the estimates from each model in the full set of
models can be averaged after weighing each model by its good-
ness-of-fit (figure 4b) in the same way that model averaging is
often applied in more traditional multi-model inference [29].
However, the wide range of model structures created by the
genetic programme makes it more likely that the set will
include models that fit the data well.

(d) Important considerations when using the method
We do not expect symbolic regression to automatically extract
concise mathematical relationships for any arbitrary ecological
dataset. As with most regression methods, symbolic regression
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is unlikely to extract meaningful relationships from a large list
of highly correlated predictors. Given the extremely flexible
forms that symbolic regression can generate, one must take par-
ticular care to ensure that models that perform well on one set
of data are robust. Model cross-validation, forecasting, and
other methods for evaluating out-of-sample performance
should be used (figure 3). As with any method of fitting and
comparing models, symbolic regression can lead to spurious
conclusions if it is not used carefully.

While observation errors are minimal in the laboratory
datasets analysed here, it can be an important issue when ana-
lysing field data. In cases where the observation and process
errors are approximately Gaussian, embedding symbolic
regression in an extended Kalman filter (e.g. [34]), and using
symbolic differentiation to evaluate the Jacobian matrices
could provide a means of partitioning noise among process
and observation errors. There are also many datasets for
which non-Gaussian likelihoods would be preferable (e.g.
when making inferences for small populations with many
zero counts). To allow for non-Gaussian process noise requires
only that we change the likelihood that serves at the ‘fitness
function’ used to compare models and fit parameters. Finally,
ecological analyses frequently include random effects to
account for complex correlation structures. Random effects
could be included in symbolic regression using a hierarchical
modelling approach [35], albeit at the expense of considerable
additional computation.

(e) Conclusions
Gains in computational power have fuelled an explosion of
statistical methods that were developed, in part, to move

beyond the limitations of traditional linear statistical tools.
The allure of such methods is that they are flexible enough to
capture the broad range of functional relationships that are
possible in ecological systems. However, this flexibility often
comes at the cost of interpretability; these methods allow one
to mine ecological datasets for relationships but rarely supply
the intuition or insight derived from theoretical ecology.
At the same time, simple theoretical models continue to form
the conceptual backbone of our discipline, despite the apparent
complexity of ecological systems. Symbolic regression has
the potential to bridge these schools of thought; it takes
advantage of computationally intensive methods to discover
structural relationships in data, but it describes those relation-
ships using the mathematical language of theoretical ecology.
The resulting equations can be studied independently of the
data to which they were fit, potentially leading to insight
about unobserved regimes, sensitivity to perturbation, and
other dynamical properties that may not be evident from the
data alone.
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