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Anthropogenic environmental change is altering the behavior of
animals in ecosystems around the world. Although behavior
typically occurs on much faster timescales than demography, it
can nevertheless influence demographic processes. Here, we use
detailed data on behavior and empirical estimates of demography
from a coral reef ecosystem to develop a coupled behavioral–
demographic ecosystem model. Analysis of the model reveals that
behavior and demography feed back on one another to determine
how the ecosystem responds to anthropogenic forcing. In partic-
ular, an empirically observed feedback between the density and
foraging behavior of herbivorous fish leads to alternative stable
ecosystem states of coral population persistence or collapse (and
complete algal dominance). This feedback makes the ecosystem
more prone to coral collapse under fishing pressure but also more
prone to recovery as fishing is reduced. Moreover, because of the
behavioral feedback, the response of the ecosystem to changes in
fishing pressure depends not only on the magnitude of changes in
fishing but also on the pace at which changes are imposed. For
example, quickly increasing fishing to a given level can collapse an
ecosystem that would persist under more gradual change. Our
results reveal conditions under which the pace and not just the
magnitude of external forcing can dictate the response of ecosys-
tems to environmental change. More generally, our multiscale
behavioral–demographic framework demonstrates how high-
resolution behavioral data can be incorporated into ecological
models to better understand how ecosystems will respond to
perturbations.

animal decision making | hysteresis | transient dynamics |
Allee effect | functional response

Understanding how anthropogenic environmental change af-
fects natural systems upon which humans rely is a pressing

scientific challenge (1, 2). Among the most rapid ways environ-
mental change can affect natural systems is by altering the be-
havior of organisms (3, 4). For example, human land use is
increasing the nocturnality of large mammal species globally (5);
warming is altering settlement, foraging, and predator avoidance
behavior of fish and invertebrates in the world’s oceans (6); and
changes in the abundance of predator species due to hunting and
habitat loss in terrestrial and aquatic ecosystems (7) are causing
cascading effects on the behavior of individuals at lower trophic
levels (8, 9). How organisms behave, including how they find
mates, consume resources or prey, and avoid danger, governs
their population’s demographic rates (10). Because of the con-
nections between behavior and demography, changes in the en-
vironment that alter behavior also have the potential to affect
population growth and persistence (11), the structure of com-
munities (12), and the function of ecosystems (4, 6, 13).
Through its effect on demography (e.g., refs. 13–16), behavior

also has the potential to affect the dynamics of ecosystem state,
for example by creating the conditions necessary for the existence

of alternative stable ecosystem states, that is, distinct ecosystem
states that are stable under the same environmental conditions
(17). The existence of alternative stable states and the properties
of transitions between those states depend on the functional re-
lationships that relate the growth and mortality rates of a pop-
ulation to its density (17–19). For example, in models of savanna
ecosystems, the form of the relationship between the severity of
fires and grass density determines whether the system exhibits
abrupt thresholds between tree- and grass-dominated states or
whether there is a smooth transition between the two (20). Simi-
larly, shifting the form of consumer functional response from
saturating (type II) to sigmoidal (type III) causes abrupt transi-
tions from consumer-dominated to plant-dominated ecosystem
states in response to resource pulses in generic population models
(18). Analogous density-dependent dynamics due to behavior (11,
16, 21) might therefore also underlie ecosystem state transitions.
Understanding the drivers of ecosystem state transitions and

when and where thresholds between distinct states can manifest
requires rigorously quantifying ecological interactions from em-
pirical data (13, 22, 23). This means deriving demographic rates
directly from measurements or empirically validated models of
behavior (21, 24). Collecting the kinds of large, in situ behavioral
datasets necessary to make this connection has only recently
become feasible with technological advancements in the ability
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to gather and analyze large amounts of video, audio, and tagging
data (25, 26). This advancement has opened the possibility of
scaling up, from behaviors at the resolution of individual or-
ganisms and on the timescale of seconds [e.g., active search be-
havior (27) or social interactions (12, 28)] to functional
relationships that can determine the long-term, ecosystem-level
consequences of such behavior (4, 13).
Coral reefs are a fitting system in which to explore the role

behavior may play in ecosystem state transitions. Over the last
half-century, coral reefs in many locations around the world have
undergone structural shifts, in which populations of foundation
coral species decline or disappear and algae come to dominate
the benthic habitat (29). If unchecked, algae can rapidly colonize
open space, preventing the expansion of existing coral colonies
or the settlement and growth of new corals (30, 31). The loss of
coral is often associated with a significant loss of biodiversity and
ecosystem services (29, 32). Demographic models suggest that
shifts from coral to algal dominance can hinge on the con-
sumption of algae by the herbivorous fish community (33–36),
and, indeed, the harvest of herbivorous fish has been proposed
by both empiricists and theoreticians as a major contributor to
ecosystem shifts (37, 38). However, there has been considerable
debate about whether or not coral-dominated and macroalgal-
dominated states represent alternative stable states (i.e., both
states stable under the same environmental conditions versus
shifts between states due to different environmental conditions)
and, if so, the precise mechanisms that generate thresholds be-
tween states (23, 39, 40). Much of this debate has centered on
how grazing behavior by herbivores feeds back on demography,
and how anthropogenic forcing, particularly fishing, influences
grazing (23, 39, 40). Determining the relevance of alternative
stable states and identifying the mechanisms that govern
thresholds remains a major goal in coral reef ecology, restora-
tion, and management (1, 41).
Here, we develop an approach that takes advantage of ex-

tensive field measurements of reef fish foraging behavior (42, 43)
to create a model of herbivory in coral reefs. We use this model
to derive the density dependence of herbivory and introduce this
functional form into a model of coral–algal–herbivore demography.
We then show how this empirically measured behavioral feedback

(42) can scale up to produce alternative stable ecosystem states. In
addition, our analysis reveals that when we include behavioral
feedbacks, transitions from coral-dominated reefs to algal domi-
nance and the collapse of coral and fish populations depend on how
quickly fishing changes and not just on the magnitude of fishing.
Our multiscale approach provides a conduit for “big behavioral
data” (25), which are becoming available in many systems (26), to
inform demographic models and to help resolve debates over the
presence and mechanisms of ecosystem thresholds. Resolving these
mechanisms can guide management decisions about not just the
amount of management adjustment but also the time course of
management changes needed to achieve a target outcome.

Results
Our modeling framework involves several steps. We 1) derive a
data-driven model of fish behavior (dynamics occurring on the
order of seconds to minutes) to determine the functional rela-
tionship between fish density and per-capita feeding rate
(Fig. 1 A and B) then 2) use that relationship in a demographic
model that follows fish, algae, and coral interactions (dynamics
occurring on the order of months to years; Fig. 1C) to determine
the ecosystem-scale consequences of behavior (see Materials and
Methods for details). Our behavioral model (System 1) tracks
movements of fish between open foraging habitat and shelter-
rich (i.e., coral-dominated) habitat. It captures the empirical
observation that fish follow each other into and out of foraging
areas and reduce their tendency to exit productive but dangerous
foraging habitat when many neighbors are present (42, 43). As a
result of these behaviors, the per-capita feeding rate of herbiv-
orous fish is an increasing function of fish density, which leads to
longer feeding bouts and greater algal consumption per bout
(Fig. 1B shows empirical consumption per foraging bout along-
side model prediction). This model reveals a fast behavioral
feedback of herbivorous fish density, H, on per capita feeding
rate, which we describe with the function λ(H). We incorporate
this functional relationship into a simple ecosystem model, a
coral–algae–herbivore demographic model, by assuming a sep-
aration of time scales by which behavior equilibrates rapidly
relative to demography. The demographic model (Eqs. 2–4)
follows herbivorous fish consumption of benthic algae, which
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Fig. 1. Demographic and behavioral feedbacks in a coral reef ecosystem. The herbivorous fish population experiences two distinct feedbacks: demographic
feedback of fish density on fish population growth driven by changes in availability of algae (A; mean ± 95% CI, data provided with permission by refs. 107
and 108; algae = brown, fish = blue) and behavioral feedback caused by changes in local fish density (B, I) driving changes in mean fish feeding behavior (B, II,
n = 44; data from ref. 42, modeled in System 1; blue curve = model predictions, R2 = 0.48). The relationships that comprise the demographic coral reef model
(C; Eqs. 2–4), including positive (black arrows) and negative (gray arrows) effects. To test its ecological consequences, we include or exclude the behavioral
feedback in the demographic coral reef model (dashed arrow in C).

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.2003301117 Gil et al.

D
ow

nl
oa

de
d 

at
 U

ni
v 

C
ol

or
ad

o 
D

en
ve

r 
H

ea
tlh

 S
ci

en
ce

s 
Li

br
ar

y 
on

 O
ct

ob
er

 2
, 2

02
0 

https://www.pnas.org/cgi/doi/10.1073/pnas.2003301117


compete with corals for limited open space on the reef. The
herbivorous fish in the model experience both natural and fishing
mortality.

Empirically Observed Foraging Behavior Involves a Feedback between
Fish Density and Algal Consumption. We fitted a behavioral model
to data and model predictions from a previous study (42) in
which we used large camera arrays to measure the foraging be-
havior (initiation and cessation of foraging and bite rate) of
herbivorous fish in a coral reef. The fitted behavioral model
reproduced observed fish behavior (SI Appendix, Solving & Fit-
ting Behavioral Model), and the resulting functional form for the
steady-state per-capita feeding rate, λ(H), was an increasing,
saturating function of total herbivore density, H. In other
words, the behavioral rules that herbivorous fish follow when
foraging cause each fish to eat more, on average, at higher
population densities. Although the structure and parameters
of this relationship are determined by fine-scale behavioral
parameters, once known, this relationship can be well ap-
proximated by an offset Michaelis–Menten function of the
form λ(H) = λ0(d + H

1+zH), where the product of λ0 and d sets the
minimum per-capita feeding rate and z determines how per-capita
feeding rate changes with herbivore abundance (SI Appendix, Fig.
S1; see also our similar approach for deriving the demographic
effect of greater risk aversion in fished populations: SI Appendix,
Direct Effects of Fishing on Fish Behavioral Traits). Through its
effect on foraging behavior, changes in fish population density,
H, feed back on per-capita feeding rate. We, therefore, refer to
this effect as a behavioral feedback.

Behavioral Feedbacks Can Increase Ecosystem Sensitivity to Fishing.
To understand the effect of the behavioral feedback, we compare
the outcome of the demographic (fish–algae–coral) model with
this feedback in the algae–fish interaction [λ(H) = λ0(d + H

1+zH) in
Eq. 2] to the case with constant, density-independent per-capita
feeding rate (λ(H) = λno  beh). The model with behavioral feed-
backs exhibits alternative stable states, which do not occur in the
model without behavioral feedbacks (see SI Appendix, Testing for
Alternative Stable States in Demographic Model; note that we do
not include a nonlinear feedback between coral cover and her-
bivory rate as in refs. 33–35). Therefore, the ecosystem collapses
or begins to recover at the same level of fishing pressure for a
given feeding rate in the model without behavioral feedbacks but
at different levels of fishing pressure in the model with behav-
ioral feedbacks (SI Appendix, Fig. S2). To compare the expected
collapse point with and without behavioral feedbacks, we first
started in an unfished system with an abundant herbivorous fish
population (i.e., the system is run to equilibrium with no fishing,
f = 0; Eq. 2), where the fish per-capita feeding rate (λ in Eqs. 2
and 3) is expected to be relatively high, a pattern that aligns with
field surveys and experiments (refs. 42–45 and Fig. 2A). We then
increased fishing by raising f by 0.01 fish biomass year−1 to a
maximum level that ranged from 0.003 to 0.5 fish biomass year−1

(SI Appendix, Sensitivity to Magnitude of Fishing). If the per-
capita feeding rate remains constant across herbivorous fish
population sizes as in the model without behavioral feedbacks,
then the ecosystem is more resistant to state shifts that result
from increasing fishing (i.e., the fish and coral populations can
withstand a higher fishing level before they collapse) than in the
model with behaviorally driven reductions in the per-capita
feeding rate with decreasing fish density (Fig. 2 and see SI Ap-
pendix, Fig. S3A and Sensitivity to Magnitude of Fishing). In SI
Appendix, we compare the recovery point with and without be-
havioral feedbacks by starting in a heavily fished coral reef with a
sparse herbivorous fish population (i.e., we run the system to
equilibrium with a high fishing rate, f = 0.5, Eq. 2, but use a very
small nonzero initial fish biomass for subsequent numerical

solutions, SI Appendix, Sensitivity to Magnitude of Fishing) and a
low per-capita feeding rate (refs. 42–44 and SI Appendix, Figs.
S3B and S4). We then decreased fishing linearly (we reduced f by
0.01 y−1) to a minimum level that ranged from 0.497 to 0 y−1. In
this case, the no-behavioral-feedbacks model with constant her-
bivory across fish population size predicts the ecosystem needs
greater reductions in fishing to recover than does the behavioral
feedbacks model where per-capita feeding depends on fish
density (SI Appendix, Fig. S4). In sum, we find that behavioral
feedbacks cause ecosystem collapse (i.e., fish and coral pop-
ulation collapse) at a lower level of fishing pressure and eco-
system recovery (i.e., recovery of the fish and coral populations)
at a higher level of fishing pressure than would be expected
under the standard assumption (33–36) that fish behave inde-
pendently of one another (Fig. 2 and SI Appendix, Figs. S3
and S4).
To illustrate the utility of explicitly modeling behavior, we use

our framework to explore the ecosystem consequences of an-
other fish behavior that has been observed in coral reef systems:
that predation (including fishing) can directly alter individual
fish behavior by increasing risk aversion during foraging (“be-
havioral feedbacks + trait shift” model, SI Appendix, Direct Ef-
fects of Fishing on Fish Behavioral Traits, refs. 44–47). When we
implement a simple adjustment to our behavioral model to
represent such fishing-induced shifts in behavioral traits (Fig. 2A,
purple [square] curve; see SI Appendix, Direct Effects of Fishing
on Fish Behavioral Traits and Fig. S1), this compounds the
aforementioned effect of behavioral feedbacks, further increas-
ing ecosystem sensitivity to fishing by reducing the fishing level
that causes fish and coral population collapse under increasing
fishing pressure (Fig. 2B, purple, square points).
By calculating the Jacobian for the model with behavioral

feedbacks (SI Appendix, Testing for Alternative Stable States in
Demographic Model), we find that the “algae only” ecosystem
state is stable only when the minimum per-capita feeding rate of
herbivores falls below the ratio of the sum of natural and fishing
mortality over the algae assimilation parameter: λ(0)< μ+f

b (Eqs. 2
and 3). In other words, the greater the fishing mortality, f (or
natural mortality, μ), or the lesser the assimilation rate of algae
by fish (b; Eq. 3), the larger the region of initial conditions that
lead to the ecosystem state with only algae and no fish or coral
remaining.
Across a wide, empirically derived range of model parameters,

the behavioral feedback captured by System 1 makes the reef
ecosystem more sensitive to changes in fish abundance (Fig. 2
and SI Appendix, Fig. S5). However, the effect of behavioral
feedbacks lowering the fishing level that causes coral collapse
(i.e., increasing ecosystem sensitivity) is greatest when coral and
algal growth rates are low (SI Appendix, Fig. S5). Furthermore,
the collapse and recovery points predicted from our numerical
analysis with fishing increasing or decreasing to a target level
over time differ from those predicted by an equilibrium bifur-
cation analysis (SI Appendix, Fig. S2). This motivated us to fur-
ther explore the importance of the pace of change of fishing
pressure.

Behavioral Feedbacks Can Make the Ecosystem Sensitive to the Pace
of Change in Fishing Mortality, Not Just the Magnitude. In addition
to increasing the ecosystem’s sensitivity to the magnitude of
fishing, the behavioral feedback on per-capita feeding rate
(Fig. 1B and System 1) causes the ecosystem to be sensitive to
how quickly the fishing rate changes. By allowing fishing mor-
tality to increase linearly up to a target level, at which it is then
held constant (SI Appendix, Sensitivity to Pace of Fishing), we find
that increasing how quickly a target fishing level is reached
(i.e., raising the initial slope in the f function shown at the top in
Fig. 3 A and B) can cause the ecosystem to undergo a state shift,
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from coral and fish persistence to the collapse of both pop-
ulations. This state shift can be avoided if the same target fishing
level is approached more slowly (Figs. 3 and 4). This kind of
sensitivity to the pace of change in a control parameter has re-
cently been referred to as “rate-dependent tipping” or, hereafter,
“R-tipping” (18, 48, 49).
Through further analysis (SI Appendix, Eqs. S11–S16) of our

demographic model with behavioral feedbacks, we can infer four
key features of the initial transient dynamics that cause R-tipping
(SI Appendix, Analysis of R-Tipping). First, more rapid increases
in fishing pressure (i.e., greater df=dt; SI Appendix, Eq. S12) lead
to more rapid declines in the realized per-capita feeding rate
λ(H), relative to the critical per-capita feeding rate needed to
sustain the herbivore population [λc(t); SI Appendix, Eq. S11].
This leads to more rapid loss of herbivores when fishing pressure
increases quickly. Second, steeper per-capita feeding rate
functions—that is, functions, λ(H), for which dλ(H)

dH is large—lead
to faster loss of herbivores [i.e., more rapid changes in
λ(H) − λc(t); SI Appendix, Eq. S11]. In other words, stronger
positive density dependence leads to faster declines in herbivore
density as fishing pressure is increased, a result evident in

Fig. 4D. Third, the loss rate of herbivores grows most rapidly
when growth of the algal population, dA=dt, is low, consistent
with the intuition that slower algal growth limits the capacity for
algal growth to compensate for herbivore mortality due to fish-
ing. Fourth, there is a threshold of algal cover needed to prevent
the collapse of a fish population suffering an abrupt increase in
fishing pressure (SI Appendix, Analysis of R-Tipping). Thus, rapid
increases in fishing pressure cause transient dynamics that reach
lower herbivore population sizes but also, critically, lower algal
cover (Fig. 3). The latter phenomenon is due to the finite rate of
algal growth and competition between algae and coral for space.
Algal growth is minimal when the standing algal cover is low and
coral and algae occupy most of the free space on the reef (Eqs. 3
and 4). Under these conditions, the slow expansion of algae
(limited by coral mortality rate:m in Eq. 4) is unable to rescue an
herbivore population declining due to rapid increases in fishing
(SI Appendix, Fig. S6). However, algae can compensate for fish
mortality when fishing pressure is increased slowly. Slow in-
creases in fishing pressure, even toward relatively high target
fishing levels, can sustain a biomass of the herbivorous fish
population equal to, or even temporarily above, the equilibrium
biomass under no fishing, although with substantial differences
in turnover (e.g., turnover rate increases ninefold from initially
no fishing to the equilibrium at f = 0.18; Fig. 3A).
In our model, when alternative stable states exist for a given

fishing level, one set of initial conditions (i.e., initial coral and
algal cover and herbivore density) leads to coral persistence,
while a different set of initial conditions leads to coral extinction.
These different “basins of attraction” to distinct ecosystem states
are separated by a boundary (i.e., a separatrix) in state space.
When fishing is increased from an unfished state, faster paces of
change push the system into the basin of attraction that leads to
fish and coral population collapse, whereas slow increases in
fishing pressure allow the system to remain in the basin of at-
traction that leads to fish and coral persistence (Fig. 4 and SI
Appendix, Fig. S7). Because the model without behavioral feed-
backs does not exhibit alternative stable states (SI Appendix,
Testing for Alternative Stable States in Demographic Model), it
cannot exhibit R-tipping of this kind. Therefore, in the presence
but not in the absence of behavioral feedbacks, the pace of
change in fishing pressure can have qualitative effects on the fate
of the ecosystem (Figs. 3 and 4) that would not be predicted by
naïvely applying traditional bifurcation analyses (Fig. 4 A–C and
SI Appendix, Figs. S2 and S7). For a given target fishing level,
there is a critical pace of change in fishing pressure that pushes
the system across the separatrix (i.e., the negative slope in
Fig. 4E). In this region of parameter space, the fate of the eco-
system is extremely sensitive to small changes in the pace of
increase in fishing pressure. For example, in one realistic region
of parameter space, our model suggests that reaching a target
fishing level just a few years faster (e.g., in 2 vs. 6 y; SI Appendix,
Fig. S8) can cause the collapse of fish and coral populations that
would otherwise persist.
R-tipping is a general property of the demographic coral reef

model when behavioral feedbacks are present. It occurs in both
the case of the monotonically increasing, saturating functional
form for per-capita herbivory shown here (Fig. 4 and SI Ap-
pendix, Fig. S9) and also under a unimodal functional form (SI
Appendix, Fig. S10) with negative density dependence (SI Ap-
pendix, Fig. S11, discussed in SI Appendix, Functional Sensitivity:
Including Negative Density Dependence). For a given functional
form of the behavioral feedback, the ranges of target fishing
levels and paces of approach over which R-tipping occurs de-
pend on model parameters (SI Appendix, Figs. S9 and S11). For
example, with a behavioral feedback that causes saturating pos-
itive density dependence (Fig. 2A, blue [circle] curve), when
coral growth rates are at the low end of their observed range
(34), R-tipping occurs over a low and narrow range of paces of
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Fig. 2. Behavioral feedbacks can alter ecosystem responses to fishing.
Changes in the abundance of herbivorous fish also affect density-dependent
behavioral feedbacks on the per-capita feeding and growth rates of herbi-
vores (A: blue curve [circle] derived from behavioral model (System 1) and
included as λ(H) in Eqs. 2 and 3, Materials and Methods, and SI Appendix,
Solving & Fitting Behavioral Model). Fishing can also directly affect individ-
ual behavior through trait shifts toward greater risk aversion (A: purple line
[square] derived from fitted System 1 parameters but with spontaneous exit
rate increasing linearly with f, up to 100% at λ(0), SI Appendix, Direct Effects
of Fishing on Fish Behavioral Traits). (B) Given an initially unfished system,
fish and coral populations collapse (i.e., drop below 0.01) under lower fish-
ing levels when behavioral feedbacks are present (blue circles) and even
lower levels when behavioral feedbacks and behavioral trait shifts are pre-
sent (purple squares), relative to the model with no behavioral feedbacks or
trait shifts (red triangles; i.e., initially high feeding rate held constant: A; see
SI Appendix, Sensitivity to Magnitude of Fishing and Fig. S3 for details).
Model results presented in B provide an example, from a single parame-
terization; however, this qualitative pattern holds across the full empirically
determined range of parameters explored (SI Appendix, Fig. S5).
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change in fishing but over a wide range of target fishing levels
(steep negative slopes in left panels of SI Appendix, Fig. S9,
where the red horizontal line represents the boundary between
basins of attraction for the model without behavioral feedbacks
for each of these parameterizations). In contrast, when coral
growth rates are higher (e.g., Fig. 4E and SI Appendix, Fig. S9),
R-tipping occurs over a much wider range of paces of change in
fishing but over a narrower range of target fishing levels (shallow
negative slopes in right panels of SI Appendix, Fig. S9); however,
in these cases, R-tipping does not manifest when target fishing
levels are approached very slowly (shown by the flat part of the
separatrix in Fig. 4E and right panels in SI Appendix, Fig. S9).

Discussion
Our analysis reveals that, despite the distinct timescales of be-
havior and demography (Fig. 1 A and B), feedbacks between the
two can qualitatively affect how ecosystems respond to anthro-
pogenic change. Specifically, our analysis reveals that interac-
tions among herbivorous reef fish produce a behavioral density-
dependence that feeds back on fish demography. This feedback
gives rise to alternative stable states and changes the conditions
under which the coral reef ecosystem will collapse in response to
fishing pressure, a ubiquitous source of anthropogenic forcing
linked to shifts in ecosystem state in aquatic environments
(50–52). However, any externally driven perturbation, anthro-
pogenic or natural, that changes fish mortality sufficiently could
also cause state shifts. In our case, by altering the density of fish,
fishing changes the feeding behavior of remaining individuals

(42, 43), which, in turn, alters the growth rate of the population.
Higher algal growth rates better buffer herbivores against
fishing-induced drops in population size that are particularly
detrimental when behavioral feedbacks are present. When algal
growth rates and coral turnover rates are at the lower ends of
their observed ranges (34), behavioral feedbacks cause the eco-
system to collapse under less than half the level of fishing that
one would expect to cause collapse if behavioral feedbacks were
not considered (shown for a single parameterization in Fig. 2B
and across parameter values in SI Appendix, Fig. S5).This effect
could be compounded if exposure to fishing also directly affects
individual behavior by making individuals less prone to feed due
to the perceived risk of mortality (44–47), an empirically docu-
mented effect that we can incorporate because long-term feeding
rates emerge from a mechanistic model of feeding behavior in
our framework (Fig. 2 and SI Appendix, Direct Effects of Fishing
on Fish Behavioral Traits). Our finding that behavioral feedbacks
can both generate demographic thresholds and affect the
amount of fishing an ecosystem can withstand before crossing a
threshold suggests that models that ignore such feedbacks could
mischaracterize how fishing affects ecosystem state.
The mechanism that gives rise to a behavioral feedback, and

ultimately produces the rich dynamics in our ecosystem model, is
the fact that foraging behavior of individual fish is strongly
nonindependent (Fig. 1 and ref. 42): Individuals graze for longer
periods of time and enter dangerous, open foraging areas more
readily when the overall density of fish in the area is higher
(Fig. 1B). Similar facilitative interactions among consumers, ei-
ther through enhanced predator avoidance (53–56), increased
resource consumption (57–60), or other mechanisms has been
documented in a diverse range of ecosystems. For example, there
is strong empirical support for the “individual risk hypothesis”
(57), within which the “many eyes” (58, 61), “risk dilution” (62),
and “confusion” (63) effects are nested: In many species of birds,
mammals, and fish, the fraction of time any given individual
devotes to vigilance typically decreases as the number of sur-
rounding conspecifics or heterospecifics increases (64). Less time
spent being vigilant typically translates to more time feeding
when foraging in larger groups (57–59, 65). Positive density de-
pendence of resource uptake is also widespread in microbial
systems, where metabolic cooperativity (e.g., ref. 66) and cross-
feeding (67) can allow individual microbes to more effectively
exploit resources as the density of conspecifics or mutualist
partners increases. Consequently, for many species, and for
guilds of interacting mutualists, it is likely that per-capita pop-
ulation growth rates increase with density, at least at low den-
sities, before plateauing or decreasing as density becomes high
(4, 68, 69). Moreover, in mixed-species communities of savanna
herbivores, not only do individuals benefit from the presence and
densities of conspecifics and heterospecifics [e.g., through alarm-
communication networks (70)], but, by grazing the landscape,
they reinforce a characteristic, putatively stable grass-dominated
ecosystem state, rather than an alternative, putatively stable state
of tree dominance (71). Thus, these and other systems with
highly social consumers whose control of primary producers can
determine the state of the ecosystem [e.g., ungulates in forest
(72) and riparian systems (73), rabbits in grasslands (74), geese in
arctic marshes (75), and planktivorous fish in freshwater lakes
(50)] could exhibit the same kind of behaviorally mediated
density dependence proposed here to govern ecosystem dy-
namics in coral reefs. While the potential for positive density
dependence to destabilize ecological systems has long been
known in the context of Allee effects (e.g., ref. 16) and mutu-
alistic interactions, determining how positive interactions play
out in the context of the more diverse ensemble of ecological
interactions that occur in real ecosystems remains a nascent but
important research area (13, 68, 76).
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Fig. 3. Small changes in fishing effort can determine whether coral and fish
populations persist or collapse. Model results illustrating a system under-
going an increase in fishing effort from no harvest (f = 0) to f = 0.18 (Eq. 2).
(A) Coral (pink), algae (brown), and fish (blue) population dynamics when
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increase in harvest (A) results in persistence of fish and coral populations;
more rapid change in harvest (B) causes fish and coral population collapse.
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For understanding the ecosystem-level consequences of addi-
tional behavioral interactions, the approach taken in this paper
of deriving demographic rate functions from fast-timescale be-
havioral data on consumer–resource interactions is generalizable
(24) and extends well beyond this system. Similar approaches
have recently been applied, for example, to predator–prey (27,
77) and disease–host (78) systems. This approach has the ad-
vantage of relating demographic rates to measurable, individual-
level behaviors, which are becoming increasingly accessible
through developments in behavioral data acquisition (25, 26, 79).
One principal outcome of the behavioral feedback in our de-

mographic model is that the pace of anthropogenic change
matters: Whether an ecosystem undergoes a transition from one
alternative stable state to another depends on how quickly fish-
ing changes (Figs. 3 and 4). This type of R-tipping (48) was re-
cently hypothesized to be a general property of dynamical
systems in which a state variable or parameter of an otherwise
autonomous system is externally forced through time (49). In our
model, the ecosystem exhibits R-tipping because of two prop-
erties. First, as we described above, the behavioral feedback
leads to bistability, in which alternative stable states of coral
population persistence or collapse (and complete algal domi-
nance) occur at the same level of fishing (Fig. 4; SI Appendix,

Testing for Alternative Stable States in Demographic Model). Sec-
ond, density-dependent herbivore feeding, finite algal growth
rate, and competition between corals and algae limit the rate of
growth of the algal and herbivore populations, as herbivores are
subjected to increasing fishing pressure (SI Appendix, Analysis of
R-Tipping). When fishing pressure is rapidly imposed, algae in-
crease but this rise in herbivore food supply is not fast enough to
compensate for fishing-induced mortality (SI Appendix, Fig. S7),
and herbivores are fished to extinction, while algae competitively
exclude corals (Figs. 3B and 4 and SI Appendix, Fig. S8B). In
contrast, increasing fishing pressure slowly allows for greater
algal growth earlier in the timeline, and the herbivore population
recovers through greater food availability (Figs. 3A and 4 and SI
Appendix, Figs. S7 and S8A), though with much higher turnover
(Fig. 3A). Although our model does not contain size or age
structure, these higher herbivore turnover rates would likely
translate to an herbivore population consisting, on average, of
younger, smaller fish size classes, typically less desirable for
fisheries (80).
The possibility that shifts in ecosystem state could depend on

the pace of change of a parameter and not just the magnitude of
change has been proposed in past work (18). However, to date,
the great majority of published analyses of transitions among
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ecosystem states do not consider this possibility (13, 19, 81). For
ecosystems that exhibit such R-tipping, standard analyses that
are often applied to understand ecosystem dynamics can give
misleading results (SI Appendix, Fig. S2). For example, bifurca-
tion analysis is widely used to determine the existence and lo-
cation of alternative stable states in ecosystem models; however,
conducting a bifurcation analysis of our demographic model at a
target fishing level (black lines and curves in Fig. 4 A–C) yields
expectations that are violated (compare with blue-white bound-
ary, or separatrix, in Fig. 4 A–C) by the dynamics of the system
when the same fishing level is reached through continuous
changes in fishing pressure over time. From an ecological or
management perspective, this finding indicates that knowing the
two system features that are most often considered when
assessing the potential impact of harvesting a population—the
initial conditions of the ecosystem and the target level of
harvest—is insufficient to predict how the system will respond to
being harvested; the pace of the change in harvest must also be
considered (Fig. 4 A–C).
R-tipping arises in our analysis because, when external

forcing and demography occur on similar timescales, transient
forcing can push a system into a new basin of attraction from
which it cannot recover. We show that the strength of the be-
havioral feedback [i.e., dλ(H)=dH] and the growth rate of algae
are crucial in determining demographic transients and, thus,
whether the system exhibits R-tipping (SI Appendix, Analysis of
R-Tipping). Similar approaches applied to evolutionary dy-
namics have shown that fast versus slow evolution or coupled
fast–slow eco-evolutionary feedbacks can drive distinct evolu-
tionary and ecological outcomes, emphasizing the importance
of analogous transient phenomena on evolutionary timescales
(82–84).
The type of behavioral feedback that generates R-tipping in

our system (a positive density-dependent rate of resource
consumption) is likely relevant to many other systems (4, 12,
85), and other systems that exhibit alternative stable states
could also exhibit R-tipping (18, 48, 49). When R-tipping is
relevant, the management decisions necessary to arrive at a
target state depend on not only the value of a management
control such as fishing but also the path to that target value. In
the case of our coral reef system, this would mean considering
how to change fishing over time, in addition to the eventual
target level of fishing. Perhaps counterintuitively, our analysis
suggests that the coral reefs most vulnerable to R-tipping are
those that fit the description of a healthy reef: high coral cover
and little free space on the reef (SI Appendix, Fig. S6). Such
reefs are vulnerable because when fishing increases there is
little space available for the algal growth needed to rescue the
herbivorous fish population from fishing-induced collapse
(Fig. 3), and the growth rate of algae is limited by the mor-
tality rate of coral. Moreover, we find that reefs with lower
mean algal growth rates and/or coral turnover rates appear
particularly sensitive to the magnitude and pace of fishing (SI
Appendix, Figs. S5 and S9). Such reefs would include those
with a coral population dominated by slower-growing, typi-
cally more stressor-resistant mounding taxa [shown to be se-
lected for by global climate change (86)], and/or an algal
population in which slower-growing macroalgae represent a
greater proportion relative to faster growing filamentous algal
turf, a pattern typically correlated with anthropogenic nutri-
ent enrichment (30). Furthermore, our findings suggest that
management strategies that prioritize the maintenance or
restoration of high herbivore densities, such as no-take marine
reserves, could reduce the susceptibility of coral reef ecosys-
tems to a change in state in response to fish mortality. In
addition to the potential to increase the overall system resilience
(i.e., basin of attraction for the target state for a given fishing ef-
fort) by allowing for more fish within reserve boundaries [as occurs

in a model where size-dependent predator-prey interactions drive
alternative stable states (87)], reserves might reduce the likelihood
of R-tipping inside and outside reserves by reducing the spatially
averaged pace at which fishing effort increases in the system as
a whole.
For fisheries more generally, our results highlight that con-

sidering the pace of change in fishing pressure may be necessary
to achieve an “ecologically sustainable yield,” targeted at main-
taining a particular ecological state [a component of ecosystem-
based management (88)] when fished species exhibit dynamics
that can cause R-tipping. The specific behaviorally driven dy-
namics we reveal could apply to other fisheries but may hold less
relevance to obligate shoaling fish taxa [which can dominate
many open-ocean fisheries (51, 52)] due to grouping behavior
that can maintain the same local density despite population
declines (89). While classic fisheries management has focused on
equilibrium harvest without considering the path to reach it (80),
considering harvest trajectories over time is a central element of
approaches such as optimal control analysis (90) and some
multiannual plans (91). In single-species fisheries models, when
the population dynamics and catch depend linearly on fishing
effort, the optimal strategy is to approach the population size
that produces the maximum sustainable yield as quickly as pos-
sible; doing anything else prolongs the time over which yields are
lower than the maximum (92). In contrast, incorporating non-
linear dynamics that lead to alternative stable states into optimal
control analysis leads to optimal pathways with delayed imple-
mentation of such strategies (93). Our results provide an addi-
tional motivation for employing an approach such as optimal
control that considers fishing trajectories over time: Subtle dif-
ferences in the pace of change of fishing could lead to significant
differences in the long-term yield and viability of the fishery.
Moreover, because the feedbacks studied here can cause the fate
of harvested fish populations to depend on the pace of change in
fishing pressure, our findings indicate a need to understand the
social and economic processes that influence changes in harvest.
While our analysis treats changes in harvest as extrinsic to the
ecological system (Eq. 2), harvest is perhaps better viewed as the
outcome of coupled social-ecological dynamics in which the
timescales of stock management and conservation policy
implementation are also important considerations (94). Fi-
nally, while incorporating species interactions has long been
a goal of ecosystem-based fishery management (95), applica-
tion to on-the-ground fishery management decisions remains
limited due to the complexity of marine food webs and the asso-
ciated model uncertainty and data limitations (96). In considering
which aspects of that complexity are most crucial to incorporate
into fisheries models, our paper, based on empirical findings of
facilitative interactions among fish in a community, adds to a
growing literature that indicates that behavioral considerations
can substantially alter how we expect a system will respond to
harvest (47, 97).
Our results reveal the potential importance of behavioral

feedbacks in modifying the location and nature (e.g., smooth vs.
abrupt) of ecosystem transitions. Although too simplistic to gen-
erate quantitative predictions for any specific reef, we consider this
work an important early step toward directly linking demography
and behavior. Additional complexities such as species diversity (98,
99) or demographic stochasticity (100) that can dampen positive
feedbacks and increase ecological resiliency should be considered
in the context of behavioral feedbacks in the future to further as-
sess the robustness of our findings (101). Coral reefs and many
other ecosystems can also exhibit complex trophic structure, strong
functional dependence on species diversity, and various levels of
demographic openness that are not considered here (48, 102, 103).
Furthermore, past models of coral reefs have shown that multiple
positive feedback mechanisms that are not included in our model
can, in isolation (e.g., refs. 33, 36, and 104) or in combination (22),
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cause alternative stable states, albeit typically between controver-
sial “coral and fish only” vs. “algae only” states (39) and over a
relatively narrow region of demographic parameter space (34,
98). Finally, including dynamic mesopredator and apex predator
populations or allowing human fishing pressure to emerge from a
dynamic process would introduce additional direct and indirect
effects (105) and demographic feedback loops but could also
introduce behavioral feedbacks within and among populations.
Determining how these mechanisms interact with the behavioral
feedbacks included in our model will be an important future step
in the analysis of ecosystem dynamics.
Our work illustrates the potential to begin to understand

how quantifiable animal behaviors influence the ecology and
conservation of natural ecosystems. We stress that our ap-
proach of unifying the disparate timescales of the behavior of
individuals and the demography of coupled populations can
and should be applied to other systems, especially those that
putatively exhibit thresholds. This line of inquiry holds
promise to inform not only the methods and guiding questions
of theoretical work on ecosystem state transitions but also
strategies for on-the-ground management in the face of
anthropogenic change.

Materials and Methods
Behavioral Model of Fish Foraging. We constructed a dynamical model of reef
fish foraging behavior based on findings from our previous field experiments
(42, 43), which employed multimodel inference to determine the essential
features required to accurately model fish foraging behavior. The model
developed here captures these salient features. In particular, we follow the
density of fish in two possible behavioral states: individuals feeding in highly
productive, open foraging habitat (e.g., pavement or coral rubble in reef
flats) easily accessible to predators (106), P(t), and individuals traversing or
hiding in relatively unproductive but shelter-rich (i.e., coral-covered) habitat
outside primary foraging areas, U(t). The total density of herbivores, H, is the
sum of densities in the two states: H = P(t) + U(t), where we assume that H is

constant (dHdt = 0) on the relatively rapid timescale of behavior (Fig. 1B).

Several factors influence movement of fish between the two states. First, fish
follow one another into and out of foraging areas such that when a fish
enters or exits foraging areas from adjacent, shelter-rich coral-dominated
habitat, it temporarily raises the probability that other fish will also enter, at
a rate αγ, or exit, at a rate αμ, respectively. To capture the observed effect of
a fish’s memory of its neighbors’ past entrances and exits (42, 43), we in-
troduce variables E and L, which track fish that recently entered or left the
foraging area. The influence of past entries or exits decays exponentially
with time at a per-capita rate 1=τE and 1=τL, respectively [τ terms estimate
the depth of time into a fish’s memory over which past events are influential
(42)]. Second, fish spontaneously enter or leave foraging areas at a per-
capita rate γ0 or μ0, respectively, and we allow a minimum per-capita feed-
ing rate >0 (e.g., due to the fact that a fish must feed at some minimum level
to avoid starvation) by including a baseline entry rate β (42). Third, the
probability that a fish will spontaneously exit the foraging area or follow the
exits of other fish into less productive regions with more shelter (i.e., coral-
dominated habitat) declines with the density of surrounding fish in the
foraging area, via the exponential parameter −ημ or −ηΦ, respectively (42).
Taken together, these behavioral dynamics are given by the following
system:

dP
dt

= U[γ0 + αγE] + β − P[μ0P
−  ημ + αμP−  ηΦL]

dU
dt

= P[μ0P
−  ημ + αμP−  ηΦL] − U[γ0 + αγE] − β

dE
dt

= U[γ0 + αγE] − 1
τE

E

dL
dt

= P[μ0P
−  ημ + αμP−  ηΦL] − 1

τL
L. [1]

By solving System 1 at equilibrium (System 1 has a unique stable internal
equilibrium in the parameter regime where it matches behavioral data: SI
Appendix, Testing for Alternative Stable States in Behavioral Model), we
calculate the long-run average number of herbivores foraging in the

productive habitat, P, and divide this by the total number of herbivores, H.
We multiply this proportion by empirical constants to compute the aver-
age per-capita rate, λ, at which the herbivorous fish population consumes
areal cover of algae per year (SI Appendix, Solving & Fitting Behavioral
Model).

Demographic Model of a Coral Reef Ecosystem. To explore the influence of
behavioral feedbacks on coral reef ecosystem dynamics and responses to
fishing pressure, we adopted a demographic modeling framework
similar to those used in past studies (33–36). The model tracks changes in
the herbivorous fish, coral and algal populations using a system of or-
dinary differential equations, where H, A, and C denote herbivorous fish
biomass, algal cover, and coral cover, respectively (Fig. 1C). Herbivorous
fish consume algae at a per-capita rate λ(H), determined from the be-
havioral model, and assimilate this algal cover to fish biomass via the
parameter b. Herbivores also experience natural mortality at rate μ and
fishing mortality at rate f (Eq. 2). Algal and coral populations each grow
into free space at a rate rA and rC, respectively, and compete with one
another for space with equivalent intraspecific and interspecific com-
petition (Eqs. 3 and 4). Algae experience mortality by being consumed
by herbivores at a per capita rate λ(H), while corals experience natural
mortality (e.g., due to corallivory, tissue damage from disturbances,
etc.) at a rate m (Eqs. 3 and 4). Thus, our demographic model takes the
form

dH
dt

= bλ(H)AH − μH − fH [2]

dA
dt

= rAA(1 − A − C) − λ(H)AH [3]

dC
dt

= rCC(1 − A − C) −mC. [4]

We used empirically determined estimates to parameterize the model (SI
Appendix, Table S1 and refs. 33–35).

Quantifying Effects of Behavioral Feedbacks.We compared two versions of the
demographic model (Eqs. 2–4 and Fig. 1C): one with the conventional as-
sumption of a constant fish feeding rate, λ(H) = λno  beh for all H
(i.e., behavioral feedbacks absent), and one with behavioral feedbacks,

where λ(H) = λ0(d + H
1+zH) based on the above-described approximation of

the solution to System 1 (SI Appendix, Solving & Fitting Behavioral Model;
functional forms shown in Fig. 2A, and SI Appendix, Fig. S1). For the model
with behavioral feedbacks, the density of herbivorous fish, H, directly affects
the population dynamics of herbivores and algae and indirectly affects the
population dynamics of corals (Fig. 1).

We used these demographic models to evaluate the response of the
reef ecosystem with behavioral feedbacks to two different directions of
anthropogenic change: 1) an increase in fishing pressure on an initially
unfished (f = 0) ecosystem and 2) a decrease in fishing pressure on an
initially degraded ecosystem (f = 0.5). Then, for the analogous model
without behavioral feedbacks in each analysis, we set the constant per-
capita feeding rate equal to that with behavioral feedbacks, given the

equilibrium biomass of herbivores, H0, under the initial fishing level, that is,

λno  beh = λ0(d + H0

1+zH0
). All other parameters and parameter values were

identical between the models. This approach allowed us to measure the
influence of behavioral feedbacks on the ecosystem response to changes in
fishing pressure.

Data Availability. Data and code used for modeling and analyses are available
via a public repository on GitHub: https://github.com/m-gil/Gil_et_al_PNAS_
2020.
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