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In human financial and social systems, exchanges of informa-
tion among individuals cause speculative bubbles, behavioral casc-
ades, and other correlated actions that profoundly influence
system-level function. Exchanges of information are also wide-
spread in ecological systems, but their effects on ecosystem-level
processes are largely unknown. Herbivory is a critical ecological
process in coral reefs, where diverse assemblages of fish maintain
reef health by controlling the abundance of algae. Here, we show
that social interactions have a major effect on fish grazing rates in
a reef ecosystem. We combined a system for observing and manip-
ulating large foraging areas in a coral reef with a class of dynam-
ical decision-making models to reveal that reef fish use informa-
tion about the density and actions of nearby fish to decide when
to feed on algae and when to flee foraging areas. This “behav-
ioral coupling” causes bursts of feeding activity that account for
up to 68% of the fish community’s consumption of algae. More-
over, correlations in fish behavior induce a feedback, whereby each
fish spends less time feeding when fewer fish are present, sug-
gesting that reducing fish stocks may not only reduce total algal
consumption but could decrease the amount of algae each remain-
ing fish consumes. Our results demonstrate that social interactions
among consumers can have a dominant effect on the flux of energy
and materials through ecosystems, and our methodology paves
the way for rigorous in situ measurements of the behavioral rules
that underlie ecological rates in other natural systems.

collective behavior | ecological rates | critical transition | functional
response | Allee effect

Our understanding of the ecology of the natural world is
rooted in the study of pairwise interactions between individ-

ual consumers and their resources. Reducing ecological dynam-
ics to individual consumer–resource interactions provides a pow-
erful way to derive fundamental ecological rates, such as the
fluxes of energy and materials from resource to consumer popu-
lations (1). This approach, however, often neglects correlations
between the behaviors of individual consumers. Studies of natu-
ral (2–5) and human (6–8) systems have documented widespread
behavioral coupling, whereby the presence or action of one indi-
vidual generates cues that influence the actions of other indi-
viduals. In the context of an ecosystem, behavioral coupling
among consumers has the potential to induce feedbacks that can
increase [e.g., via behavioral Allee effects (9)] or decrease [via
consumer interference or false alarms (10)] the rate at which
consumer communities harvest resources, and thereby affect how
the ecosystem functions, fluctuates, and responds to environmen-
tal change (11, 12).

The population- and ecosystem-level consequences of behav-
ioral coupling are typically inferred from demographic data, for
example, by fitting models with and without behavioral Allee
effects to population time series (9, 13). However, relying on
demographic data alone can severely mischaracterize dynamics
when data are limited: for example, in cases where observed pop-
ulation dynamics occur in a regime where behavioral coupling
has little effect on population growth and death rates, but unob-
served regimes exist where effects of coupling are dominant (13).

In principle, behavioral coupling and the feedbacks it induces
could be measured directly, by quantifying the rules consumers
use to respond to one another and linking these rules to rates
of resource consumption (14). This approach has been success-
fully used to characterize ecological rates in laboratory systems
(11, 15) but has not been applied in natural ecosystems. Here, we
measure how behavioral coupling influences resource consump-
tion in a coral reef ecosystem by combining field experiments
with a method for fitting and comparing dynamical decision-
making models.

We focused on a vital consumer–resource interaction in coral
reef ecosystems: the consumption of benthic algae by fish. When
unchecked, algae can harm foundation coral species and cause
catastrophic changes to reef ecosystems (12, 16). We studied
mixed-species aggregations of nonschooling reef fish [primarily
herbivores in the families Acanthuridae and Scaridae; (17)] in
the coral reefs of Mo’orea, French Polynesia. These species face
a trade-off between foraging in open reef flats, rich in algae but
exposed to predators (Fig. S1), or remaining close to the reef
structure, where algae are less available (18). Because fish feed
in shared foraging areas, they have the opportunity to base their
decisions to forage or flee foraging areas, at least in part, on the
presence and actions of other nearby fish (3).

If reef fish interact primarily by interfering with one another
during foraging (14), or if copying one another’s actions
causes frequent false alarms (2, 10), we might expect behavioral
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coupling to reduce the amount of algae fish consume. On the
contrary, if fish are more likely to enter foraging areas or feed
for longer periods of time when other foraging fish are present—
for example, because the presence of other foragers reduces per-
ceived risk (19, 20)—behavioral coupling could increase algal
consumption, at least across a range of consumer densities where
resource productivity is not limiting. These two scenarios have
vastly different implications for reef ecosystems. The first sce-
nario induces a negative density dependence that reduces the
amount of algae each fish can consume as population densities
rise (10, 14). The second scenario can induce a positive density
dependence across a range of population densities, potentially
causing Allee effects that could make fish populations highly vul-
nerable to extinction as they become small (9, 11, 13).

Results
Detecting and Quantifying Behavioral Coupling in Situ. To deter-
mine whether and how behavioral coupling influences algal con-
sumption, we engineered large underwater camera frames, each
equipped with an array of downward-facing video cameras to
remotely monitor foraging areas within the reef (Materials and
Methods and Fig. S1). This setup allowed us to observe continu-
ously all fish that entered or exited foraging areas and to record
the timing of thousands of fish foraging decisions.

Our data revealed that fish entered and exited foraging areas
in bursts of activity, interspersed among periods of low activity
(Fig. 1). Bursts were caused by strong temporal correlations in
fish behavior (Fig. S2) that could have been generated by two
nonmutually exclusive mechanisms: independent responses of
fish to environmental stimuli (e.g., nearby predators) and behav-
ioral coupling (2). To determine how these two mechanisms
influence fish foraging decisions, we experimentally manipulated
foraging areas by imposing an ecologically relevant threat: an
approaching spear fisherman (21) (Materials and Methods).

By applying the same threat stimulus in repeated trials (n =
51), we could condition observed responses of fish on a known
stimulus. In unmanipulated controls (n = 44), fish grazed forag-
ing areas continuously, with the exception of sporadic instances
when all fish briefly exited (Fig. S3). In the predator treatment,
all fish exited the foraging area in nearly 100% of experimen-

Fig. 1. (Top) Reef fish enter and exit foraging areas in bursts of activity.
Using overhead camera arrays (Fig. S1), we recorded (Middle) the times at
which reef fish exited (red bars) and entered (blue bars) foraging areas (bars
are exit/entry times from n = 44 concatenated time series; gray and white
bands indicate distinct time series). (Bottom) The rate of events (entries +
exits s−1), illustrating bursts of activity. Large bursts of activity occur more
frequently than expected if fish foraging decisions were temporally uncor-
related (permutation test, p = 1× 10−4; Fig. S2).
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Fig. 2. Reef fish make foraging decisions by combining direct informa-
tion about predators with social cues. (A) An experimental time series from
the predator treatment, showing the density of foraging fish (gray) and
sequence of fish entries (blue) and exits (red) from the foraging area.
(B) Sequence of entries and exits for all n = 51 time series from the preda-
tor treatment. (C) Mean entry and exit rates calculated from time series
shown in B. (D and E) Normalized frequency distribution of (D) interexit and
(E) interentry intervals calculated from the time series shown in C and from
simulations using best-fit model (orange solid line) and best-fit model with-
out behavioral coupling (green dashed line; see SI Text, Multimodel Infer-
ence and Model Comparisons).

tal trials, and fish did not return for an average of 34 s (Fig. S3),
indicating that the predator treatment elicited a community-wide
flight response. Fig. 2A shows a typical time series of fish entries
and exits from the predator treatment (blue and red bars), along
with the density of foraging fish (gray density plot). When the
predator was far from the foraging area, fish entered and exited
individually or in short bursts of several entries or exits (Fig.
2A, time >20 s). As the predator came near the foraging area,
fish ceased to enter, and all remaining fish exited (Fig. 2A, time
<20 s). This pattern was consistently observed across predator
trials (Fig. 2 B and C).

The timing of entry and exit events (Fig. 2B) and changes in
event frequency are driven by underlying changes in fish behav-
ior. To infer the behavioral rules fish use to decide when to enter
and exit foraging areas, we modeled latent entry and exit rates
using a dynamical decision-making model.

Dynamical Decision-Making Model. To infer decision rules from
behavioral time series, we derived a dynamical decision-making
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model based on the theory of self-exciting random walks (22, 23).
The model described the timing of fish entries into and exits from
the foraging area (Fig. 2 A and B) as a stochastic process, with
latent entry and exit rates that could depend on the predator
stimulus, socials cues, or both (Materials and Methods and Eq.
1). The predator experiment served to provide a known stimu-
lus, which allowed us to distinguish effects of predator forcing
from effects of behavioral coupling among fish.

We derived the likelihood function associated with the
stochastic process defined by Eq. 1, which allowed us to fit and
compare models that represent alternative hypotheses about
how fish respond to predators and social cues. We compared
models that included only direct responses of fish to the preda-
tor stimulus to models that also included responses to the den-
sity and previous actions of other fish (see SI Text and Table S1
for details of model comparison). All models that best described
data from the predator treatment included responses to both the
predator and social cues, as indicated by the Bayesian Informa-
tion Criterion (BIC): ∆BIC of the best model without behavioral
coupling = 190.8 (Table S1).

As the predator approached, fish lowered the rate at which
they entered the foraging area and increased the rate at which
they exited (Fig. 2C). Models with and without behavioral cou-
pling captured these patterns (Fig. S4), but models without cou-
pling failed to reproduce the large number of brief time inter-
vals between entries and exits that occurred when fish entered
or exited in bursts (Fig. 2 D and E, green dashed line). Mod-
els that included behavioral coupling not only fit data far better
(Table S1), but these models also reproduced the short intervals
between entries and exits (Fig. 2 D and E, orange solid line), sug-
gesting that rapid bursts of activity occur, in part, because fish use
cues from other fish to decide whether to feed or flee.

The model that best described our data revealed that fish
increase their entry rate into foraging areas in response to past
fish entries, and they increase their exit rate from foraging areas
in response to past fish exits (Table S1 and Fig. S4). Further-
more, fish lower their sensitivity to departures of other foragers
as the overall density of foragers increases (Fig. S5). Because of
this, false alarm cascades are relatively rare, even when the den-
sity of foraging fish is high (Fig. S6), and the lengths of foraging
bouts increase with fish density (Fig. 3). We did not find evidence
that fish change the way they respond to social cues as a predator
approaches (Table S1).

Behavioral Coupling Increases Carbon and Nitrogen Flux from
Algae to Fish. Because the entry and exit rate models we fitted
to data define a stochastic process, we could use fitted mod-
els to simulate the number of reef fish in foraging areas over
long periods of time. To determine how these behaviors affected
algal consumption and consequent elemental fluxes, we used the
model that best described our experimental data to simulate for-
aging by the herbivorous reef fish community over full diel forag-
ing cycles (∼10.65 h · d−1; see SI Text, Simulated Foraging). To
quantify the mean rate at which the herbivorous fish commu-
nity harvests carbon and nitrogen by consuming algae, we com-
bined these simulations with measurements of consumption rates
from our data, predator visitation rate, and published measure-
ments of forager bite size and algal elemental composition (SI
Text, Simulated Foraging and Fig. S7). We then repeated sim-
ulations assuming fish ignore the density of other foragers and
the cues generated by past fish entries and exits (“no behavioral
coupling,” Fig. 4A and Simulated Foraging, Quantifying Effect of
Behavioral Coupling on Herbivore Density).

The model revealed that mean rates of carbon and nitrogen
uptake are 68% lower when fish make foraging decisions inde-
pendently than when they respond to social cues (Fig. 4A); this
is because fish use social cues to follow one another into forag-
ing areas (Fig. S4), and individual fish feed for longer periods of
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Fig. 3. Fish foraging bouts are longer when the density of foragers is
higher. Mean time spent foraging per bout increases with mean fish density
(means of individual control trials: blue points, regression with heteroge-
neous variance p = 1.7×10−5; simulated foraging: orange points and 99%
prediction envelope). The orange points and prediction envelope were gen-
erated by simulating 1,000 180-s intervals using the best-fit model fitted to
data from the predator experiments with the predator forcing term set to
zero (Materials and Methods).

time when more fish are actively foraging (Fig. 3). Foraging rates
simulated by the model with behavioral coupling coincide with
empirical estimates of foraging rates measured in a Caribbean
coral reef ecosystem (Fig. 4A, gray band) (24) and algal pro-
duction at our study site on the north shore of Mo’orea (Fig.
4A dashed line) (25). In SI Text, Robustness of Consumption to
Model Assumptions, we show that these results are unchanged if
we more explicitly account for the diversity of herbivorous fish
by allowing individual fish to have different bite rates and to con-
sume variable amounts of algae per bite (Fig. S8).

Behavioral Coupling Induces a Correlation Between per Capita
Consumption and Total Fish Abundance. For an individual fish to
benefit from the effects of behavioral coupling, the total abun-
dance of fish on the reef must be high enough that fish regularly
have access to social cues. We simulated foraging with and with-
out behavioral coupling over a range of total abundances of fish
on the reef (Fig. 4B).

When fish behaviors were uncorrelated, per capita algal con-
sumption was independent of fish abundance (Fig. 4B, green
points). In contrast, when fish foraging behaviors were coupled,
each individual fish consumed more algae as total fish abundance
increased (Fig. 4B, orange points), because entry cascades were
more common when the total abundance of fish was high, lead-
ing to higher forager densities and longer bouts of foraging per
fish (Fig. 3). One important consideration when interpreting this
finding is that we expect this positive density dependence to be
most important when total herbivore abundance is low enough
that per capita consumption is limited by the amount of time an
individual spends foraging rather than by algal supply. Negative
density dependence will likely also be important if algal supply is
limiting (14).

To generate the per capita consumption shown in Fig. 4B, we
assume that, regardless of the total abundance of fish on the reef,
fish make foraging decisions using the rules we measured by fit-
ting our decision-making models to data. However, it is possible
that, when the total abundance of herbivorous fish is low, fish

Gil and Hein PNAS | May 2, 2017 | vol. 114 | no. 18 | 4705

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1615652114/-/DCSupplemental/pnas.201615652SI.pdf?targetid=nameddest=SF8


C
om

m
un

ity
 C

 c
on

su
m

pt
io

n 
(k

g 
ha

-1
 d

-1
)

Behavioral
coupling

No behavioral
coupling

0
5

10
15

20
local algal C production

empirical C consumption
from the Caribbean

25

C
om

m
un

ity
 N

 c
on

su
m

pt
io

n 
(k

g 
ha

-1
 d

-1
)

0
0.

17
0.

34
0.

51
0.

68
0.

85

0
2

4
6

0.0 0.5 1.0
Scaled total herbivore abundance

1.5

0
Behavioral
coupling

A

B
0.

04
0.

08
0.

12
0.

16
0.

2

P
er

-c
ap

ita
 N

 c
on

su
m

pt
io

n 
( g

 fi
sh

-1
 d

-1
)

No behavioral
coupling

P
er

-c
ap

ita
 C

 c
on

su
m

pt
io

n 
(g

 fi
sh

-1
 d

-1
)

Fig. 4. Responses to social cues increase algal consumption by the her-
bivorous fish community. (A) Simulations that include behavioral coupling
(orange) have mean consumption rates within the range of empirical mea-
surements of carbon consumption by herbivorous fish in a Caribbean reef
ecosystem [gray band, mean ±1 SD (24)] and mean biomass production by
algal turf at our study site [dashed line (25)]. (B) Upper bound on mean per
capita daily algal consumption from simulations with (orange) and with-
out (green) behavioral coupling, across a range of total fish abundance (see
Carbon and Nitrogen Uptake by the Fish Community, Per Capita Carbon and
Nitrogen Consumption for details of calculation). Red points are parameter
estimates from our data (shown in A). Algal consumption is expressed in
units of algal carbon or nitrogen based on published measurements from
our study site (see SI Text, Carbon and Nitrogen Uptake by the Fish Com-
munity). Confidence envelopes are computed from empirical variation in
predator visitation rate, fraction of the fish community composed of herbi-
vores, bite rate per herbivore, and carbon/nitrogen consumed per bite.

alter their foraging behaviors, thereby affecting their per capita
consumption. In Robustness of Consumption to Model Assump-
tions, Long-Term Changes in Fish Behavior, we explore how long-
term changes in fish behavior can influence the relationship
between per capita consumption and total herbivore abundance.
In general, we find that fish can modify their behaviors to main-
tain high per capita consumption when the total abundance of
herbivores is low; however, doing so requires that individual fish
become bolder, spending large amounts of time foraging alone
or in small groups where the per capita risk of predation is high
(Robustness of Consumption to Model Assumptions, Long-Term
Changes in Fish Behavior and Fig. S9).

Empirically determining precisely how fish balance the trade-
off between per capita algal consumption and predation risk will
require future studies that measure fish behaviors across a range
of total herbivore abundances and predation pressures. How-
ever, some herbivorous reef fish have been shown to respond
to increased predation pressure and low herbivore density by
becoming less bold rather than more bold (26, 27), which could
reinforce the pattern of low per capita consumption at low her-
bivore abundances predicted in Fig. 4B (Fig. S10).

Taken together, our results demonstrate that behavioral cou-
pling can impact resource consumption both at the level of
the herbivorous fish community and at the level of individ-
ual consumers. For example, the model indicated that reduc-
ing total herbivorous reef fish abundance to 20% of its current
value (e.g., via overfishing) would cause each fish to consume
an average of ∼26% less algal carbon and nitrogen per day. If
reductions in per capita consumption translate to lower pop-
ulation growth rates, reef fish populations may be particu-
larly susceptible to sudden collapses when they become small
(9, 11).

Quantifying the long-term effects of behavioral coupling on
algal consumption requires scaling from the behavioral timescale
of our foraging area experiments to longer timescales and larger
spatial scales. To do this, we made several key assumptions that
are important to consider when applying our approach or con-
clusions to other systems. The first assumption is that, when fish
leave foraging areas, they temporarily stop feeding while they
transit to another foraging area or hide in the reef structure. Reef
fish often cease feeding while hiding or transiting (e.g., refs. 26
and 27), and we regularly observed this behavior in our exper-
iments. Modifying this assumption—for example, by assuming
that fish continue to feed outside foraging areas but at a reduced
rate—can change the quantitative difference in algal consump-
tion rate between models with and without behavioral coupling.
However, the qualitative conclusions that behavioral coupling
(i) increases total algal consumption rate and (ii) induces a pos-
itive density dependence in per capita consumption are robust
to a wide range of alternative assumptions (Robustness of Con-
sumption to Model Assumptions, Fish Behavior Outside Forag-
ing Areas). A second assumption is that the rates at which fish
enter and exit a foraging area are independent of one another
except through their joint dependence on the predator stimulus
(Eq. 1). Our data support this assumption (Robustness of Con-
sumption to Model Assumptions, Correlations in Entry and Exit
Rates). However, this need not hold in other systems, and our
model could be modified to incorporate correlated entry and
exit rates.

Discussion. By combining high-resolution observations of thou-
sands of actions taken by individual foragers with a modeling
framework, our analyses reveal that the actions of individual
consumers are highly correlated in time, and that these corre-
lations are driven, in part, by behavioral coupling. Social inter-
actions among fish increase the number of fish that are actively
foraging and, consequently, the rate at which the herbivorous
fish community harvests carbon and nitrogen by consuming algae
(Fig. 4B).

Through various mechanisms, algae harm corals and can come
to dominate reefs when unchecked (28–30). Fish mediate this
algal–coral interaction by controlling the abundance of algae,
and the loss of fish through overfishing and habitat degrada-
tion (28, 31) is emerging as a major driver of global coral reef
degradation, with associated losses of biodiversity and ecosystem
services (16, 32). Our study expands this paradigm by revealing
a potentially fundamental aspect of the alga–herbivore dynamic
not yet formally considered: Overfishing and other disturbances
that lower fish abundance also reduce the availability of social
cues, potentially affecting the ability of remaining fish to control
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algae. These findings indicate that reef ecosystems may be more
sensitive to reductions in fish abundance than previous analyses
have suggested (16, 32). Our results imply that foraging models
that do not consider how herbivorous reef fish respond to one
another (models that assume ideal-free foraging, random for-
aging, etc.) could mischaracterize the relationship between fish
density and algal consumption, and the consequent dynamics of
fish and algal populations.

The methodology developed here provides a rigorous way to
quantify the behavioral rules consumers use to make foraging
decisions in situ, and to link those rules to the ecological rates
that are crucial to the dynamics of ecosystems. This approach
complements more traditional demographic methods for deter-
mining how foraging behavior influences ecological rates (e.g.,
refs. 14 and 33) and paves the way for future investigations of
how animal behaviors scale up in natural ecosystems. More gen-
erally, our results suggest that behavioral coupling could be a
fundamental but largely unexplored link between collective ani-
mal behavior and ecosystem function, with broad implications for
environmental management.

Materials and Methods
Camera Array Setup and Study Sites. We used polyvinyl carbonate pip-
ing to construct two field-deployable camera frames, each 6× 2× 2 m
(l×w× h). In the lagoon off of the north shore of Mo’orea, French
Polynesia, we located two foraging areas, separated by ∼150 m, each
characterized by a shallow (2.5 m depth) reef flat, comprised primarily
of pavement and coral rubble habitat. High irradiance and a consistent
delivery of new algal propagules by currents yield high algal production
across hard-bottom reef flats in the back reef (25). The foraging areas used
in our study are representative of foraging areas throughout the ecosystem.
Each foraging area was surrounded by abundant and dense reef structures,
dominated by live and dead colonies of massive and submassive (mounding
and partially branching) Porites corals of 0.5 to 1.5 m height, which fish read-
ily used as refuges throughout the study. We mounted one camera frame at
each foraging area, using concrete substrate mounts, allowing us to monitor
foraging areas from above (Fig. S1).

Experimental Protocol. We randomly assigned the control and predator
treatment to each of the two sites at the onset of the experiment and alter-
nated assignments on each subsequent day to control for site effects. At the
start of the control and predator trials for a given day, three downward-

facing video cameras (GoPro, Inc.) were mounted to each camera frame.
Cameras continually recorded a contiguous field of view of 18 m2 (Fig. S1)
while experiments were being conducted. In each predator trial, a free diver
(M.A.G.) holding a pole spear approached the experimental site designated
as the predator treatment from a distance of 33 m away (due south) from
the center of the video camera array at a pace of 1 m per 3 s. The diver
maintained a constant speed by referencing distance markers placed on the
substrate before deployment of the camera frames. The diver continued
directly through the foraging area, maintaining the same speed, and con-
tinued for 5 m beyond the foraging area. The site designated as the control
each day was left undisturbed after video camera deployment. At the end
of each set of control and predator trials, all cameras were removed. The
animal experiments reported in this paper were conducted in full compli-
ance with the policies and procedures of the Institutional Animal Care and
Utilization Committee (IACUC) at the University of Florida, and all proto-
cols and procedures involving animals were reviewed and approved by the
IACUC.

Inferring Behavioral Rules from Entry and Exit Time Series. We modeled
the instantaneous rates at which fish enter and exit foraging areas using
the functions

λ(t) = λ0 + φλ({X}<t) + θλ(t),
µ(t) = N(t)(µ1[N(t)] + φµ[{Y}<t , N(t)] + θµ[t,N(t)]),

[1]

where λ(t) is the instantaneous rate at which fish enter the foraging area,
µ(t) is the instantaneous rate at which fish exit the foraging area, and N(t)
is the number of fish present in the foraging area at time t. The functions φ
are memory kernels that describe the effect of the history of past fish entries
and exits on the current entry and exit rates; the set of entry times that occur
up to time t is {X}<t , and {Y}<t is the set of exit times that occurred up
to time t. The functions θ are forcing functions that describe the effect of
the predator stimulus on entry and exit rates. The terms λ0 and µ1 describe
the rate of spontaneous entries and exits (i.e., entries and exits that are
independent of the past history of entries and exits, and predator forcing).
Mathematical details of model derivation, fitting, and model comparison
are described in Supporting Information.
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